C CENTRAL EUROPEAN OLYMPIAD IN INFORMATICS

e Kosice, Slovak Republic
2@02 30 June — 6 July 2002

Page 1 of 3 Day 2 : party

Birthday party

Author(s) of the problem: Michal ForiSek
Contest-related materials by: Michal Forisek, Jana GajdoSikova

Introduction

From our point of view, the names of John’s friends will be boolean variables. If
a variable is true, it means that John should invite the corresponding person and vice
versa. But then the requests John got are nothing else than logical formulas! Our task is
to assign logical values to the variables so that each of the formulas will be true.

This is an important problem in theoretical computer science. It is so important, that
in has even got a name — SAT. (This is just an abbreviation of “satisfiability”.) In general,
this problem is known to be NP-complete. Between other things this means, that there
is no known algorithm, that solves SAT in polynomial time.

On the other hand, some of the input files were pretty large, and obviously no exponen-
tial-time algorithm had a chance to solve them in mere 5 hours. But then, this was an
open data problem. If the backtracking algorithm doesn’t do the trick, we will have to
find something that may help us. Keep in mind that you may use any means necessary
to produce the correct output. This especially means that sometimes it is much easier to
edit something by hand than to code another 100 lines into your program.

Some words about logic

In the following paragraphs, letters A, B, ... will denote arbitrary logical formulas, not
only variables. We will use - to denote the negation of any formula. This means, that
we will be able to denote also some logical formulas that weren’t allowed in the problem
statement (for example =(A | B)). You have probably realized that the operator & was
logical and (we will call it a conjunction of the variables), | was logical or (a disjunction)
and => was an implication.

As a most basic fact note that the formulas (A => B), (<A | B) and (-B => -A) are
equivalent. As a consequence, the formula (A => -A) is true iff A is false. The formu-
la (A => (B => C)) is equivalent to ((A & B) => C). Therefore (A => (-A => B)) is
always true. We will also need the de Morgan’s rules:

e —-(A1 & ... & Am) is equivalent to (<A1 | ... | -Am)
e -(A1 | ... | Am) is equivalent to (<A1 & ... & -Am).

From the facts mentioned above follows that the following formulas are equivalent:

e (A1 => (A2 => (... (Am=> (B1 | ... | Bn))...)))
e ((A1 & ... & Am) => (B1 | ... | Bn))

e ((-(A1 & ... &Am)) | (B1 | ... | Bn))

e (<A1 | ... | -Am | B1 | ... | Bn)

We will call all variables and their negations by the common name literal. We say,
that a formula is in the conjunctive normal form (CNF), if it is a conjunction of some
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logical formulas and each of these formulas is a disjunction of some literals. For example,
the formula ((A | B) & (B | -C | C | C) & -D & (A | C)) isin CNF. It is not hard
to prove, that each formula has an equivalent one, that is in CNF. The observations we
made will help us later to rewrite some input files into equivalent ones, that are in CNF.

Inputs 1-4

Just parsing the input file and reading it correctly is quite a lot of work. But when we
take a look at the input files, we may see that with almost no work we can make reading
the input a lot easier.

First of all, note the names of the variables in inputs 2..10. They are: b, ¢, d, ...,
i, j, ba, bb, ... Does it remind you of something? And when you see the sequence:
1, 2, 3, ..., 8,9, 10, 11, ...7 After we replace the letters a-j by the numbers
0-9, the names are just numbers from 1 to N. (Under Linux, this can be done by one
command: “tr a-j 0-9”.) And how convenient, negation is denoted by the minus sign,
so negations of the variables will be the numbers from —1 to —N. Input 1 differs, and
the most efficient way to get rid of this difference is to solve it completely by hand.

Almost all formulas in the first four inputs are of the form (1it1 | 1it2 | ... |
1itK), where each 1itX is a literal. This type of input is quite convenient, because it
simply means that at least one of the literals in the formula has to be true. We simply
rewrite the remaining few formulas into equivalent ones, having this form. As we don’t
need the characters (,),| anymore, we may delete them. If we regard the whole input
file as one big conjunction of its lines, we see, that after rewriting the bad lines the input
is in CNF.

Input files 1 to 4 were quite small, any (for input 4: any not completely brute-force)
backtracking algorithm could find a solution in a reasonable amount of time. Loading the
input and checking whether all the formulas are satisfied for some particular values of the
variables becomes easy when the input file is in CNF.

Input 10

This was the biggest and ugliest of the input files, but definitely not the hardest one.
When we take a closer look at the input file, we discover that its last lines are of the form
(A => -A) and (-B => B). From the first one we know that A has to be false, from the
second one B is true. In this way we know the values of all but the first three variables.
The remaining three variables can be determined by looking at the first three lines of the
input.

From the problem statement we know that a solution exists. What we found is the only
possible solution, therefore it is the solution we seek. We don’t have to verify, whether
also the other formulas are true. (In fact they are, the input file was correct. How would
you generate such an input file?)

Inputs 5-9

These inputs are way too big for an exponential-time algorithm to work in reasonable
time. So let’s take a closer look at the input files. We will find out that each (input
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9: almost each) of the formulas contains only two literals forming an implication or a
disjunction. How may this help us?

We may rewrite each formula into the form of an implication. For example (A | B)
becomes (-A => B). Now we will build a directed graph. The vertices of our graph will
be the literals, also the variables and their negations. The implications will form directed
edges in our graph. The meaning of an edge is following: if its source vertex is true, then
also its destination vertex has to be true.

From the formula above we would get the edge from -A to B. Note that the formula
is also equivalent to (-B => A), and so we get also the edge from -B to A. In a similar
way each formula in the input file creates two edges in our graph. Note that the graph is
symmetric in the following way: if we swap variables and their negations and rotate the
direction of the edges, we get the same graph.
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-A -B -C -D

Our graph for the following formulas:
(A=>-B), B | -C), B | C), (D =>-B)and (C | D).

Now we want to label each of the vertices true or false, so that for each variable A
exactly one of the vertices corresponding to A, -A is true. Also if some vertex v is true,
then all vertices u such that there is an oriented v — u path have to be true.

Clearly if for some variable A the vertices corresponding to A and -A lie in the same
strongly connected component, such labeling does not exist. (One of them has to be true,
and if they are in the same component, this means that the other one has to be true too
— a contradiction.) We will show that in all other cases a solution does exist.

Take some topologically maximal strongly connected component C. In other words,
divide the graph into strongly connected components and take any component C such
that no edge enters C. (Is it possible that there would be no such component? Why
not?) We will label the vertices in C' false. By the symmetry of the graph, the vertices
corresponding to the negations of literals in C' form a topologically minimal (e.g. such
that no edge leaves it) strongly connected component C’ in our graph. We label all the
vertices in C' true. Clearly the labeling of vertices in C' and C" is correct and it does
not restrict the labeling of the rest of the graph in any way. Thus we may remove the
components C, C’ from the graph and label the rest of it recursively.

The program is a straigthforward implementation of the idea above. The size of the
graph is linear in the size of the input. There is a well-known algorithm (based on depth-
first search) to find the strongly connected components of a graph in time linear in its size.
Then we apply topological sort to the resulting component graph and label its vertices in
the way described above. Thus the solution is linear in the size of the input.



