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Český abstrakt: Charakterizujeme σ-P -pórovité množiny v libovolném úplném met-
rickém prostoru pomoćı nekonečné hry, kde P je libovolná relace pórovitosti. Tato
charakterizace může být použita zejména pro př́ıpad obyčejné pórovitosti, ale také pro
mnoho jiných variant pórovitosti.
Kĺıčová slova: nekonečné hry, pórovitost

English abstract: We characterize σ-P -porous sets in any complete metric space via
an infinite game where P is an arbitrary porosity-like relation. This can be applied to
ordinary porosity above all but also for many other variants of porosity.
Keywords: infinite games, porosity
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1. Introduction.

The theory of porous and σ-porous sets forms an important part of real analy-
sis and Banach space theory for more than forty years. It originated in 1967 when
E. P. Dolženko used for the first time the nomenclature ‘porous set’ and proved that
some sets of his interest are σ-porous (see [1]). Since then the porosity has been used
many times especially in the differentiation theory (see [4] for an example). A very
useful fact is that every σ-porous set (in R

n) is of the first category and has Lebesgue
measure zero. In many cases, it is much more comfortable to prove that a given set is
σ-porous than proving that the set is both small in the sense of category and in the
sense of measure. On the other hand, not every set of the first category and measure
zero is also σ-porous which was first proved by L. Zaj́ıček in [6] (although E. P. Dolženko
stated this assertion without proof earlier).

The main aim of my work is finding an infinite game which characterizes σ-porous sets
in as much general metric spaces as possible. This characterization should be similar
to the very well known characterization of meager sets using so called Banach-Mazur
game. This means, I would like to find an infinite game such that a set A is σ-porous
if and only if the second player has a winning strategy in this game (which depends
on the set A). A connection between σ-porosity and infinite games was first shown by
M. Zelený in [9] where a sufficient condition for σ-porosity is given via an infinite game
(but more complicated than just having a winning strategy). In Cantor topological
space (where porosity is defined in a very natural way), the characterization was found
by J. Zapletal and is described in a joint paper of J. Zapletal and I. Farah (see [3]).
This was generalized by D. Rojas-Rebolledo, who found a similar characterization of
σ-porosity (and also of σ-strong porosity) in any zero-dimensional metric space (see
[5]). However, both these cases concerns only very special cases. In my work, I describe
an infinite game which characterizes σ-P -porous sets in any complete metric space X
where P is an arbitrary porosity-like relation on X.
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2. Preliminaries.

Let (X, d) be a metric space. An open ball with center x ∈ X and radius r > 0 is
denoted by B (x, r). If A ⊆ X then diam A = sup{d(a, b) : a ∈ A, b ∈ A}.

We will prove our result for a general porosity-like relation. To do this, we need the
following definition.

Definition 2.1. Let X be a metric space and let P ⊆ X × 2X be a relation between
points of X and subsets of X. Then P is called a point-set relation on X. The symbol
P (x, A) where x ∈ X and A ⊆ X means that (x, A) ∈ P . For A ⊆ X and B ⊆ X, we
also use the symbol P (A, B) which is equivalent to [P (a, B) for every a ∈ A].

The point-set relation P on X is called a porosity-like relation if moreover the fol-
lowing conditions hold:

(P1) if A ⊆ B ⊆ X, x ∈ X and P (x, B) then also P (x, A),
(P2) if A ⊆ X and x ∈ X then P (x, A) if and only if there exists r > 0 such that

P (x, A ∩ B (x, r)),
(P3) if A ⊆ X and x ∈ X then P (x, A) if and only if P

(

x, A
)

.

If P is a porosity-like relation on X, A ⊆ X and x ∈ X, we say that

• A is P -porous at x if P (x, A),
• A is P -porous if it is P -porous at every its point,
• A is σ-P -porous if it is a countable union of P -porous sets.

It can be easily checked that almost all commonly used variants of porosities (under-
stood as point-set relations in a natural way) are porosity-like relations. Therefore, the
characterization from the next chapter can be applied to all of them, namely to ordinary
porosity (see the following definition), strong porosity (see [7, p. 317]), symmetrical
porosity (see [7, p. 320]), but also right and left porosity (see [7, p. 317]), g-porosity
(see [10, p. 35]), etc. To give an example, here is the definition of ordinary porosity.

Definition 2.2. Let (X, d) be a metric space. Let A ⊆ X, x ∈ X and R > 0. We
denote

γ(x, R, A) = sup
{

r > 0: there exists z ∈ X such that

d(x, z) < R and B(z, r) ∩ A = ∅
}

,

p (x, A) = lim sup
R→0+

γ(x, R, A)

R
.

We say that

• A is (ordinary) porous at x if p (x, A) > 0,
• A is (ordinary) porous if it is porous at every its point,
• A is σ-(ordinary) porous if it is a countable union of porous sets.
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We will need the following theorem which can be found in [8, Lemma 3].

Theorem 2.3 ([8, Lemma 3]). Let X be a metric space, P be a porosity-like relation
on X and A ⊆ X. Then A is σ-P -porous if and only if for every x ∈ A there exists
r > 0 such that B (x, r) ∩ A is σ-P -porous.

It is also necessary to remind some basic definitions which concern infinite games.
Let A be a nonempty set and n ∈ N. We denote by An the set of all sequences
s = (s0, s1, . . . , sn−1) of length n from A. We also set A0 = {∅} where ∅ is the empty
sequence (of length 0). We denote by A<N (resp. AN) the set of all finite (resp. infinite)
sequences from A. This means that

A<N =
∞
⋃

n=0

An.

The length of a finite sequence s is denoted by length (s). If s ∈ A<N and n ≤ length (s)
then s|n = (s0, s1, . . . , sn−1) ∈ An. If s, t ∈ A<N then we say that s is an initial
segment of t and t is an extension of s if there exists n ∈ N such that n ≤ length (t)
and s = t|n. If s = (s0, s1, . . . , sn−1) ∈ An and t = (t0, t1, . . . , tm−1) ∈ Am, then the
concatenation of s and t is the sequence s∧t = (s0, s1, . . . , sn−1, t0, t1, . . . , tm−1) ∈ An+m.
If x = (xn)∞n=1 ∈ AN and n ∈ N then x|n = (x0, x1, . . . , xn−1) ∈ An. A finite sequence
s ∈ A<N is an initial segment of x ∈ AN if s = x|n for some n ∈ N.

A subset T ⊆ A<N is called a tree on A if for every t ∈ T and every initial segment
s of t, we have s ∈ T . A sequence x ∈ AN is called an infinite branch of T if x|n ∈ T
for every n ∈ N. The body of T is the set of all infinite branches of T and is denoted
by [T ]. This means that

[T ] = {x ∈ AN : x|n ∈ T for every n ∈ N}.

A tree T is called pruned if every s ∈ T has a proper extension in T , i.e. for every
s ∈ T there exists t ∈ T such that t is an extension of s and t 6= s.

Let A be a nonempty set and X ⊆ AN. We associate X (which is called a payoff set
then) with the following game:

I a0 a2 a4

· · ·
II a1 a3 a5

Player I plays a0 ∈ A, then player II plays a1 ∈ A, I plays a2 ∈ A, etc. Player I wins if
(an)∞n=1 ∈ X, II wins in the opposite case. We denote this game by G (A, X).

A strategy for player I in the game G (A, X) is a tree σ ⊆ A<N on A such that

• σ is nonempty,
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• if i ∈ N ∪ {0} and (a0, a1, . . . , a2i) ∈ σ then also (a0, a1, . . . , a2i, a2i+1) ∈ σ for
every a2i+1 ∈ A,

• if i ∈ N∪{0} and (a0, a1, . . . , a2i−1) ∈ σ then there exists a unique a2i ∈ A such
that (a0, a1, . . . , a2i−1, a2i) ∈ σ.

If we say that player I follows the strategy σ, we mean the following. Player I starts
with the unique a0 ∈ A such that (a0) ∈ σ. If II replies by a1 ∈ A then (a0, a1) ∈ σ and
I plays the unique a2 ∈ A such that (a0, a1, a2) ∈ σ, etc.

A strategy for player I is winning in the game G (A, X) if for every run (an)∞n=1 ∈ AN

of the game, in which I follows the strategy, (an)∞n=1 ∈ X (and so I wins the run).
In a similar way, we define a (winning) strategy for II.
In the game G (A, X), both players play arbitrary elements from a given nonempty

set A. In many cases (also in this work), it is more convenient to let them obey some
rules which are represented by a nonempty pruned tree T ⊆ A<N (which determines so
called legal positions). Let X ⊆ [T ] (X is called a payoff set again), then we define the
game G (T, X) as follows:

I a0 a2 a4

· · ·
II a1 a3 a5

Again, I plays a0 ∈ A, II plays a1 ∈ A, etc. but both players have now to choose their
moves such that (a0, a1, . . . , an) ∈ T for every n ∈ N∪{0}. Player I wins if (an)∞n=1 ∈ X,
II wins in the opposite case. The notion of (winning) strategy is defined analogously as
before. However, this is only a special case of the previous game. Indeed, it is easy to
see that if we denote

X ′ = {x ∈ AN :
(

there exists n ∈ N such that x|n /∈ T

and the smallest such n is even
)

or (x ∈ X)},

then I (resp. II) has a winning strategy in the game G (T, X) if and only if I (resp. II)
has a winning strategy in the game G (A, X ′).

Finally, we will need the definition of a σ-discrete system of sets.

Definition 2.4. Let X be a topological space. A system V of subsets of X is said to
be

• discrete if for every x ∈ X there exists a neighborhood of x which intersects at
most one set from the system V,

• σ-discrete if it is a countable union of discrete systems.

We will use the existence of a σ-discrete basis of open sets in a metric space. This is
guaranteed by the following theorem (proof can be found in [2, Theorem 4.4.3]).
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Theorem 2.5 ([2, Theorem 4.4.3]). Let X be a metrizable topological space. Then X
has an open basis which is σ-discrete.
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3. Characterization of σ-P -porous sets in a complete metric space.

Let (X, d) be a nonempty complete metric space and A ⊆ X. Let P be a porosity-like
relation on X. We define a game G (A) between Boulder and Sisyfos as follows:

Boulder B1 B2 B3

· · ·
Sisyfos (S1

1) (S1
2 , S

2
2) (S1

3 , S
2
3 , S

3
3)

(By using the names Boulder and Sisyfos, we follow the original terminology of J. Zaple-
tal.) On the first move, Boulder plays an open ball B1 ⊆ X and Sisyfos plays an open
set S1

1 ⊆ B1. On the second move, Boulder plays an open ball B2 such that B2 ⊆ B1 and
diam B2 ≤ 1

2
diam B1 and Sisyfos plays open sets S1

2 ⊆ B2 and S2
2 ⊆ B2. On the nth

move, Boulder plays an open ball Bn such that Bn ⊆ Bn−1 and diam Bn ≤ 1
2
diam Bn−1

and Sisyfos plays open sets S1
n ⊆ Bn, S2

n ⊆ Bn, . . . , S
n
n ⊆ Bn. After a run of the game

G (A), we get a unique point x lying in the intersection of the balls Bn, n ∈ N. We call
this point an outcome of the run. Sisyfos wins the run if at least one of the following
conditions is satisfied:

(i) x /∈ A,

(ii) there exists m ∈ N such that x ∈ X\
∞
⋃

n=m

Sm
n and P

(

x, X\
∞
⋃

n=m

Sm
n

)

(in this

case, every such m is called a witness of Sisyfos’ victory).

Boulder wins in the opposite case.
We say that a finite (also empty) sequence of open balls (B1, B2, . . . , Bi) is good

if the rules of the game G (A) allow Boulder to play the ball Bn on his nth move,
n = 1, 2, . . . , i. (In the game G (A), this is independent of Sisyfos’ moves.) Let σ be a
strategy for Sisyfos in the game G (A). Let us denote B0 = X. For m ∈ N ∪ {0} and
a good sequence T = (B1, B2, . . . , Bi) we denote by MT

m the set of all x ∈ A ∩ Bi such
that in every run satisfying

(⋆T ) Boulder played the balls B1, B2, . . . , Bi in sequence on his first i moves and
Sisyfos kept on the strategy σ for the whole run,

and giving x as its outcome, all the witnesses of Sisyfos’ victory (if there exist any) are
greater than m. (The set MT

m depends on the set A and on the strategy σ. This will
not cause any difficulties since if we talk about this set later, both A and σ are always
fixed.)

Let Boulder and Sisyfos play a run of the game G (A). Let

V = (B1,S1, B2,S2, . . .) ,
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Sn = (S1
n, S

2
n, . . . , Sn

n), n ∈ N, where Boulder played the ball Bn and Sisyfos played the
sets S1

n, S
2
n, . . . , S

n
n on the nth move of the run, n ∈ N. Then we will refer to the run

itself by V and if we talk about the ball Bn or about the set Sm
n , m ∈ {1, 2, . . . , n},

n ∈ N, from the run V , we just use the symbols Bn (V ) and Sm
n (V ), respectively.

First of all, we prove the following lemma which is well known at least for ordinary
porosity.

Lemma 3.1. Let V be a σ-discrete system of σ-P -porous sets in X. Then
⋃

V is also
σ-P -porous.

Proof. Let V =
∞
⋃

n=1

Vn where Vn is a discrete system for every n ∈ N. Let us take n ∈ N

and x ∈ X. There exists r > 0 such that B (x, r) intersects at most one set from the
system Vn. Therefore B (x, r) ∩

⋃

Vn is a σ-P -porous set. By Theorem 2.3, the set
⋃

Vn is σ-P -porous. Finally,
⋃

V =
∞
⋃

n=1

⋃

Vn

is σ-P -porous as well. �

The next technical lemma will be used to prove Theorem 3.3 which is our main result.

Lemma 3.2. Let σ be a strategy for Sisyfos in the game G (A). Let

T0 = (B1, B2, . . . , Bi)

be a good sequence of open balls and let m ∈ N ∪ {0}. Then there exist a P -porous set
NT0

m and a σ-discrete system E of sets such that

MT0

m = NT0

m ∪
⋃

E

and, for every E ∈ E , there exists a finite sequence T of open balls such that T0
∧T is

good and E ⊆ MT0
∧T

m+1 .

Proof. Denote

Z =
⋃

{

Sm+1
n (V ) : n ≥ m + 1, V is a run of the game G (A) satisfying (⋆T0)

}

.

Let us take x ∈ Z. Then we can find (and fix) n (x) ≥ m + 1 and a run V (x) of the
game G (A) satisfying

(

⋆T0

)

such that x lies in the open set Sm+1
n(x) (V (x)). Thus, if B

is a σ-discrete basis of open sets in X (whose existence is guaranteed by Theorem 2.5)
then the system

E ′ =
{

B ∈ B : B ⊆ Sm+1
n(x) (V (x)) for some x ∈ Z

}

is a σ-discrete covering of Z. For x ∈ Z, let us denote

T (x) =
(

Bi+1 (V (x)) , Bi+2 (V (x)) , . . . , Bmax{i,n(x)} (V (x))
)

.
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Now, whenever y ∈ Sm+1
n(x) (V (x)) for some x ∈ Z and V ′ is a run satisfying (⋆T0

∧T (x))

and giving y as its outcome then V ′ coincides with V (x) in its first n (x) moves, in

particular Sm+1
n(x) (V ′) = Sm+1

n(x) (V (x)), and so y /∈ X\
∞
⋃

n=m+1

Sm+1
n (V ′) and m + 1 is not

a witness of Sisyfos’ victory in the run V ′. Thus, if y ∈ Sm+1
n(x) (V (x)) ∩ MT0

m then also

y ∈ M
T0

∧T (x)
m+1 which gives us the inclusion

Sm+1
n(x) (V (x)) ∩ MT0

m ⊆ M
T0

∧T (x)
m+1 .

We can define

E =
{

MT0

m+1

}

∪ {E ∩ MT0

m : E ∈ E ′}

and

NT0

m = MT0

m \
(

Z ∪ MT0

m+1

)

.

The system E is obviously σ-discrete and MT0

m = NT0

m ∪
⋃

E . It only remains to show
that the set NT0

m is P -porous. Let us choose x ∈ NT0

m arbitrarily. Then x ∈ MT0

m \MT0

m+1

and so there exists a run V satisfying (⋆T0) and giving x as its outcome such that m+1
is a witness of Sisyfos’ victory in the run V , in particular

P

(

x, X\
∞
⋃

n=m+1

Sm+1
n (V )

)

.

But

NT0

m ⊆ X\Z ⊆ X\
∞
⋃

n=m+1

Sm+1
n (V ) ,

and by (P1) we have P
(

x, NT0

m

)

. �

Theorem 3.3. Sisyfos has a winning strategy in the game G (A) if and only if A is a
σ-P -porous set.

Proof. First, let us assume that A =
∞
⋃

n=1

An where An is a P -porous set for n ∈ N. In

his nth move, let Sisyfos play Sj
n = ∅ for j < n and Sn

n = Bn\An. Let Boulder and
Sisyfos play a run of the game G (A) such that Sisyfos keeps on the described strategy.
Let x ∈ X be an outcome of this run. We may assume that x ∈ A because otherwise
Sisyfos wins by condition (i) (see page 9). Then there exists m ∈ N such that x ∈ Am.
We have

X\
∞
⋃

n=m

Sm
n = Am ∪ (X\Bm) .
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Therefore

x ∈ Am ⊆ X\
∞
⋃

n=m

Sm
n .

Further, P -porosity of Am implies that P (x, Am). But this is equivalent to P
(

x, Am

)

by (P3) and this is equivalent to P
(

x, Am ∪ (X\Bm)
)

by (P2) since x ∈ Bm. So we

also have P

(

x, X\
∞
⋃

n=m

Sm
n

)

. Therefore Sisyfos wins by condition (ii) (see page 9) with

m as a witness and the described strategy is winning.
Now, let us assume that Sisyfos has a winning strategy σ in the game G (A). Let us

denote E0 = A. By Lemma 3.2, we have

A = E0 = M∅
0 = N∅

0 ∪
⋃

E

where N∅
0 is P -porous and E is a σ-discrete system of sets such that for every E1 ∈ E ,

there exists a good sequence T (E1) such that E1 ⊆ M
T (E1)
1 . Now, for every E1 ∈ E we

have
E1 ⊆ M

T (E1)
1 = N

T (E1)
1 ∪

⋃

FE1

where N
T (E1)
1 is P -porous and FE1 is a σ-discrete system of sets such that for every E2 ∈

FE1, there exists a finite sequence T (E1, E2) of open balls such that T (E1)
∧T (E1, E2)

is good and E2 ⊆ M
T (E1)∧T (E1,E2)
2 . If we denote

EE1 =
{

E1 ∩ E2 : E2 ∈ FE1

}

then we have
E1 =

(

E1 ∩ N
T (E1)
1

)

∪
⋃

EE1.

In the third step, for every E1 ∈ E and E2 ∈ EE1 we have

E2 ⊆ M
T (E1)∧T (E1,E2)
2 = N

T (E1)∧T (E1,E2)
2 ∪

⋃

FE1,E2

where N
T (E1)∧T (E1,E2)
2 is P -porous and FE1,E2 is a σ-discrete system of sets such that

for every E3 ∈ FE1,E2, there exists a finite sequence T (E1, E2, E3) of open balls such

that T (E1)
∧T (E1, E2)

∧T (E1, E2, E3) is good and E3 ⊆ M
T (E1)∧T (E1,E2)∧T (E1,E2,E3)
3 . If

we denote
EE1,E2 =

{

E2 ∩ E3 : E3 ∈ FE1,E2

}

then we have
E2 =

(

E2 ∩ N
T (E1)∧T (E1,E2)
2

)

∪
⋃

EE1,E2.

By iterating this process, we get a system of sets
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U =
{

Ek ∩ N
T (E1)∧T (E1,E2)∧...∧T (E1,E2,...,Ek)
k :

k ∈ N ∪ {0}, E1 ∈ E , E2 ∈ EE1, . . . , Ek ∈ EE1,E2,...,Ek−1

}

such that for every k ∈ N∪ {0} and for every E1 ∈ E , E2 ∈ EE1, . . . , Ek ∈ EE1,E2,...,Ek−1,
the sequence T (E1)

∧T (E1, E2)
∧ . . . ∧T (E1, E2, . . . , Ek) is good and such that every

U ∈ U is P -porous.
We show that A ⊆

⋃

U . Suppose that this is not true. Then there exist x ∈ A and
a sequence (Ek)

∞
k=1, Ek ∈ EE1,E2,...,Ek−1, k ∈ N, such that

x ∈ Ek ⊆ M
T (E1)∧T (E1,E2)∧...∧T (E1,E2,...,Ek)
k

for every k ∈ N. Therefore Boulder can play a run of the game G (A) in the following
way. He plays all the balls from T (E1) in sequence on his first moves, then all the
balls from T (E1, E2) and so on. (It can also happen that this process is finished after
finitely many moves. This becomes in the case that there exists k0 ∈ N ∪ {0} such
that the sequences T (E1, E2, . . . , Ek) are empty for k ≥ k0. Then Boulder can finish
the run arbitrarily such that the outcome of the run is x.) After such a run, x is its
outcome and any m ∈ N is not a witness of Sisyfos’ victory as long as Sisyfos keeps

on the strategy σ since x ∈ M
T (E1)∧T (E1,E2)∧...∧T (E1,E2,...,Em)
m for every m ∈ N. This is a

contradiction with the assumption that the strategy σ is winning for Sisyfos.
By (P1), it suffices to show that

⋃

U is a σ-P -porous set. We have

⋃

U =

∞
⋃

k=0

⋃

Uk

where
Uk =

{

Ek ∩ N
T (E1)∧T (E1,E2)∧...∧T (E1,E2,...,Ek)
k :

E1 ∈ E , E2 ∈ EE1, . . . , Ek ∈ EE1,E2,...,Ek−1

}

.

We will prove that
⋃

Uk is a σ-P -porous set for every k ∈ N ∪ {0} which is obviously
sufficient. For k = 0 we know that

⋃

U0 = N∅
0 which is a P -porous set. Suppose that

k > 0 and E1 ∈ E , E2 ∈ EE1, . . . , Ek−1 ∈ EE1,E2,...,Ek−2 are fixed. Then

C (E1, E2, . . . , Ek−1) :=
⋃

{

Ek ∩ N
T (E1)∧T (E1,E2)∧...∧T (E1,E2,...,Ek)
k : Ek ∈ EE1,E2,...,Ek−1

}

is a union of a σ-discrete system (since EE1,E2,...,Ek−1 is σ-discrete) of P -porous sets
and by Lemma 3.1 it is a σ-P -porous set. Next, if only E1 ∈ E , E2 ∈ EE1, . . .,
Ek−2 ∈ EE1,E2,...,Ek−3 are fixed, then
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C (E1, E2, . . . , Ek−2) :=
⋃

{

Ek ∩ N
T (E1)∧T (E1,E2)∧...∧T (E1,E2,...,Ek)
k : Ek−1 ∈ EE1,E2,...,Ek−2, Ek ∈ EE1,E2,...,Ek−1

}

=
⋃

{

C (E1, E2, . . . , Ek−1) : Ek−1 ∈ EE1,E2,...,Ek−2

}

is a union of a σ-discrete system (indeed, C (E1, E2, . . . , Ek−1) ⊆ Ek−1 and EE1,E2,...,Ek−2

is σ-discrete) of σ-P -porous sets and by Lemma 3.1 it is σ-P -porous again. Repeating
this consideration long enough, we get that only for E1 ∈ E fixed,

C (E1) :=
⋃

{

Ek∩N
T (E1)∧T (E1,E2)∧...∧T (E1,E2,...,Ek)
k : E2 ∈ EE1, E3 ∈ EE1,E2, . . . , Ek ∈ EE1,E2,...,Ek−1

}

=
⋃

{

C (E1, E2) : E2 ∈ EE1

}

is σ-P -porous as a union of a σ-discrete system of σ-P -porous sets. Finally,
⋃

Uk =
⋃

{C (E1) : E1 ∈ E}

is σ-P -porous, too. �
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