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Abstract

Empirical Likelihood (EL) combined with Estimating Equations (EE) provides a modern
semi-parametric alternative to classical estimation techniques like Maximum Likelihood Estima-
tion (ML).

In this work we use closed form of conditional expectation and conditional variance of Inte-
rest Rate Diffusion model (Vasicek model and Cox-Ingersoll-Ross model) to perform Maximum
Empirical Likelihood (MEL) estimation and Maximum Euclidean Empirical Likelihood (EEL)
estimation of parameters of the models. Problem of singularity in EEL is resolved my means of
Moore-Penrose pseudoinverse. Monte Carlo simulations show that MEL and EEL provide com-
petitive performance to parametric alternatives. Moreover, it turns out that a set of estimating
equations employed here provides increased stability compared to recent approach, which uti-
lizes closed form of conditional characteristic function. Calibration of CIR model on European
Over-Night Interest Rate Average data by means of MEL and EEL appears to be sufficiently
plausible. Steady state mean and standard deviation implied by obtained estimates are consis-
tent with sample mean and standard deviation from the data.

Keywords: Empirical likelihood, Euclidean empirical likelihood, Estimating equations, Va-
sicek model, CIR model

Abstrakt

Metóda empirickej vierhodnosti spolu s odhadovými rovnicami je modernou alternatívou ku
klasickým odhadovacím prístupom ako napríklad metóda maximálnej vierhodnosti.

V tejto práci používame explicitné vyjadrenie podmienenej strednej hodnoty a podmiene-
nej disperzie difúzneho modelu úrokových mier (Vašíčkov model a Cox-Ingersoll-Ross model) na
odhad parametrov modelov metódou maximálnej empirickej vierodnosti (MEL) a maximálnej
euklidovskej empirickej vierohodnosti (EEL). Použitie Moore-Penrose-ovej pseudoinverznej ma-
tice vyriešilo problémy so singularitou v EEL. Monte Carlo simulácie ukazujú, že MEL a EEL
sú porovnateľné s parametrickými alternatívami. Naviac, ukazuje sa, že použitie daných odha-
dovacích rovníc zvýšilo stabilitu v porovnaní s moderným prístupom, ktorý využíva explicitné
vyjadrenie podmienenej charakteristickej funkcie. Kalibrácia CIR modelu na dátach európskeho
priemeru jednodňových úrokových mier použitím MEL a EEL sa javí ako dostatočne hodnoverná.
Stredná hodnota a štandardná odchýlka stacionárneho stavu vypočítaná na základe odhadnu-
tých parametrov je konzistentná s výberovou strednou hodnotou a štandardnou odchýlkou z dát.

Kľúčové slová: Empirická vierohodnosť, Euklidovská empirická vierohodnosť, Odhadovacie
rovnice, Vašíček model, CIR model
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1 Introduction

Estimation of a parameter of interest which affects distribution of measured data usually begins
with a specification of a model, i.e., a family of probability distributions parametrized by the
parameter. In this setting, the estimation is most commonly performed by the Method of
Maximum Likelihood (ML). Resulting ML estimators enjoy excellent asymptotic properties: they
are asymptotically unbiased, asymptotically normally distributed and asymptotically efficient,
so that the given information is fully exploited. Unfortunately, in many cases the family of
distributions that generates data is unknown. In this respect it should be noted that the theory
of Quasi Maximum Likelihood studies conditions under which ML estimators retain at least
consistency property, when they are erroneously based on gaussian model.

If a researcher refuses to make distributional assumptions then semi-parametric methods can
be used. Suppose that the information about the parameters of interest is in form of unbiased
moment functions. All what is known is that the expectation of the moment functions, which are
functions of data and vector of parameters, is zero. Resulting equations are called (Unbiased)
Estimating Equations (EE). EE define a set of probability distributions which form the model.
In order to relate the model and data, an empirical analogue of EE is formed by replacing
the expectations by the average. If the number of equations is equal to dimension of vector
of parameters, which is known as the exactly identified case, then the set of equations can be
solved. An estimator which is obtained this way is known as the Method of Moments estimator.

Hansen (1982) extended MM estimation and inference to the over-identified case, where the
number of the moment conditions (encoding the information we have in our disposal) is greater
than number of parameters. In this case it is not possible to satisfy all the EE at once, but it
is meaningful to find a pseudo-solution which is as close to zero in all the EE, as possible. The
closeness is measured by a weighted Euclidean distance. The resulting estimator is known as the
Generalised Method of Moments (GMM) estimator. If the statistical model is not misspecified
(i.e., it contains the true data-generating distribution), then GMM estimator is asymptotically
normally distributed, with a known covariance matrix.

In GMM framework every observation is given the equal weight 1/n, where n is the number
of observations. However, it is meaningful to assign unequal weights to the data. If the drawn
data are IID, then the likelihood of a random sample is simply the product of all the assigned
weights (probabilities). Then, an objective may be to jointly set these probabilistic weights and
vector of parameters to maximize the likelihood of the sample subject to empirical Estimating
Equations. This way a parametrized probability mass function (pmf) from the model (i.e.,
the set of parametrized pmf’s which are supported by the sample and satisfy empirical EE)
with highest value of likelihood is selected. The parametric component of the pmf serves as
an estimator of the parameter of interest. The estimator is known as the Maximum Empirical
Likelihood estimator. Note that the data itself chooses which observation should be given a
higher or lower probability (weight). The Empirical Likelihood approach combines reliability of
semi-parametric models with efficiency of likelihood based methods.

2 Empirical Likelihood

2.1 Estimating equations and Empirical Likelihood

Estimating equations (EE) linked with empirical likelihood is an extremely flexible tool for
parameters estimation; cf. [QL94], [Owe01], [MJM00]. Note that with this framework we are
also able to incorporate the prior information about the underlying distribution.

Suppose that information about distribution F is in form of unbiased estimating functions
m(X, θ). Let X ∈ Rd be a random variable, θ ∈ Rp vector of parameters of interest and

2



Empirical Likelihood Estimation of Interest Rate Diffusion model

vector-valued function m(X, θ) ∈ Rs such that

E(m(X, θ)) = 0.

There are three different cases that can occur, we will focus on the last one.

• Under-identified case p > s - in this case do not sufficient information to identify θ, but
we can reduce the size of the space of parameters.

• Just-identified case p = s - Method of Moments can be used since the number of the
restrictions is the same as the number of parameters of interest

• Over-identified case p < s - this is of crucial importance in Econometrics, where several
methods have been developed to deal with this case; e.g. Generalized Method of Moments
or Empirical Likelihood.

The profile empirical likelihood is in form

R(θ) = max
wi

{
n∏
i=1

nwi|
n∑
i=1

wim(Xi, θ) = 0, wi ≥ 0,
n∑
i=1

wi = 1

}
.

The vector of weights w represents the most probable distribution on the random sample X,
that is consistent with the empirical moment conditions. Condtitions wi ≥ 0 and

∑n
i=1wi = 1

ensure that w is correct probability distribution.
Few examples of estimating equations

• m(X, θ) = X − θ for estimation of the mean

• for estimation of the variance θ = (µ, σ), m1(X, θ) = X − µ, m2(X, θ) = (X − µ)2 − σ2

• we require that α-quantile is 4:
m(X, θ) = 1X≤4 − α

• for estimation of the mean of a symmetric distribution θ = µ, m1(X, θ) = X−µ, m2(X, θ) =
1X≤µ − 0.5

EE can cover broad type of information. Note that by selecting m(X, θ) = ∂
∂θ log f(x, θ),

maximum likelihood estimator can be obtained, whenever it is defined by the score equations.

2.2 Maximum Empirical Likelihood Estimator

Empirical likelihood is method of statistical inference, however in this work we are interested
more in estimation than in tests and confidence regions by EL. This section draws on [Owe01]
and [QL94].

Maximum Empirical Likelihood Estimator (MEL) is defined as the value of θ that maximizes
the profile empirical likelihood

θ̂EL = arg max
θ∈Θ

R(θ).

We can see that MEL is result of two interdependent optimization problems.
For the inner loop, which is maximization over weights (probabilities) wi that we assign to

particular observations, we can solve dual problem.
Since log-transformation is monotonous, let us rewrite the inner loop using Lagrangian in

the following form

G =
n∑
i=1

log(nwi)− nλ′
(

n∑
i=1

wim(Xi, θ)

)
− γ

(
n∑
i=1

wi − 1

)
.
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Note that space of vectors of weights is convex set Sn−1 = {(w1, ..., wn)|
∑n

i=1wi = 1, wi ≥ 0}
and log-transformed objective function is strictly concave. We solve FOC for this optimization
problem

∂G

∂wi
=

1
wi
− nλ′m(Xi, θ)− γ = 0

n∑
i=1

wi
∂G

∂wi
= n− γ = 0⇒ γ = n,

so

wi =
(

1
n

)
1

1 + λ′m(Xi, θ)
,

with restriction

0 =
n∑
i=1

wim(Xi, θ) =
(

1
n

) n∑
i=1

1
1 + λ′m(Xi, θ)

m(Xi, θ),

therefore we can think about the lagrange multipliers λ as a function of θ, λ = λ(θ). In order to
ensure that 0 ≤ wi ≤ 1, for fixed θ, vector λ has to satisfy

∀i : 1 + λ′m(Xi, θ) > 1/n. (1)

We omitted case in which wi = 0, because this cannot be result of our minimization, since
the objective function approaches −∞, so ∀i : wi 6= 1 and we can use strict inequality sign in
(1).

If we substitute this wi into logR(F ) we get

logR(F ) = −
n∑
i=1

log(1 + λ′m(Xi, θ)) ≡ L(λ).

In this dual problem we seek minimum of L(λ) over λ. So we have changed maximization over
n-weights subject to d+1 constraints to minimization over d variables λ subject to n constraints
(1), note that we eliminated γ = n.

Now we face the following constrained optimization problem

min
λ∈Rd

L(λ) s.t. ∀i : 1 + λ′m(Xi, θ) > 1/n.

Owen in his book [Owe01] provides a trick which change this problem into the unconstrained
optimization. Let us define a pseudo-logarithm function

log∗(z) =

{
log(z), if z ≥ 1/n,

log(1/n)− 1.5 + 2nz − (nz)2/2, if z ≤ 1/n,

L∗(λ) ≡ −
n∑
i=1

log∗(1 + λ′m(Xi, θ)). (2)

The function is unchanged for arguments greater than 1/n and it is quadratic if argument
is less than 1/n, which corresponds to wi > 1 and therefore will not affect optimiziation. This
transformation may significantly reduce the computational burden.
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Using convex duality theorem, we have thus obtained another optimization problem that
leads to MEL

θ̂EL = arg max
θ∈Θ

max
wi∈Sn−1

{
n∑
i=1

log(nwi)|
n∑
i=1

wim(Xi, θ) = 0

}
, (3)

⇔

θ̂EL = arg max
θ∈Θ

min
λ∈Rd

n∑
i=1

L∗(λ),

⇔

θ̂EL = arg min
θ∈Θ

max
λ∈Rd

n∑
i=1

log∗(1 + λ′m(Xi, θ)). (4)

Equation (4) will be the basis for computational part of this work.

2.3 Empirical Likelihood as GMC

Previous sections describe Empirical Likelihood in discrete case, where it is a very intuitive con-
cept. To extend EL into continuous case, we have to use a more theoretical framework. This
seems to be necessary to avoid a discrete-continuous conflict, which results from the fact that
we are optimizing over discrete distributions subject to constraints involving continuous pdf’s.
This section provides a justification for use of EL also in the continuous case. It is based on
convex duality and subsequent replacement of the original measure µ by its sample counterpart
µn (ECDF). Bickel, Klassen, Ritov and Wellner [BKRW93] pointed out, that Maximum Like-
lihood estimate may be subsummed under Generalized Minimum Contrast (GMC) estimation
procedure. Kitamura in his comprehensive study [Kit06] showed how EL can be included into
GMC scheme. We will follow his argument and notation. Suppose we have a convex function φ
which measures a divergence between two probability measures P and Q

D(P,Q) =
∫
φ

(
dP

dQ

)
dQ. (5)

We denote x as IID p-observations from the true probability measure µ, M is the set of all
possible probability measures on Rp and

P(θ) =
{
P ∈M :

∫
m(x, θ)dP = 0

}
.

Let P = ∪θ∈ΘP(θ) is the set of all measures that are consistent with the moment restriction.
Statistical model P is correctly specified if µ ∈ P.

Our goal is to find the value of parameter θ which solves the GMC optimization

inf
θ∈Θ

ρ(θ, µ), ρ(θ, µ) = inf
P∈P(θ)

D(P, µ).

Note that inner loop of this optimization problem contains a variational problem and therefore
it is difficult to compute. We will show in detail how Lagrange duality can be used to transform
this problem to finite dimensional unconstrained convex optimization problem. If we set p = dP

dµ ,
so D(P, µ) =

∫
φ(p)dµ, then the primal problem is infinite dimensional optimization. Note that

since we are in the inner loop, parameter θ remains fixed

v(θ) = inf
p∈P

∫
φ(p)dµ s.t.

∫
m(x, θ)pdµ = 0,

∫
pdµ = 1. (6)
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We write down Lagrangian

L(p, λ, γ) =
∫
φ(p)dµ− λ′

∫
m(x, θ)pdµ− γ

(∫
pdµ− 1

)
,

L(p, λ, γ) = γ +
∫

(φ(p)− λ′m(x, θ)p− γp)dµ,

inf
p∈P

L(p, λ, γ) = γ +
∫

inf
p∈P

[φ(p)− (λ′m(x, θ) + γ)p]dµ

and since 1

f∗(y) = sup
x

[xy − f(x)],

−f∗(y) = inf
x

[f(x)− xy],

the objective function in dual problem may be rewritten as

inf
p∈P

L(p, λ, γ) = γ −
∫
φ∗(γ + λ′m(x, θ))dµ,

so we obtained computationally more convenient dual problem

v∗(θ) = max
γ∈R,λ∈Rq

[
γ −

∫
φ∗(γ + λ′m(x, θ)dµ

]
. (7)

Note that by the Fenchel duality theorem (Borwein and Lewis (1991), [BL91]) v(θ) = v∗(θ). The
probability measure that solve the optimization problem (6) is in form

p̃ = (φ′)−1(γ̃ + λ̃′m(x, θ)), (8)

where γ̃, λ̃ is the solution of dual problem (7).
Therefore we face the following problem

inf
θ∈Θ

v∗(θ) = inf
θ∈Θ

max
γ∈R,λ∈Rq

[
γ −

∫
φ∗(γ + λ′m(x, θ)dµ

]
.

Here we take empirical measure µn as valid approximation of true measure µ. This will lead to
sample version of GMC problem

min
1
n

n∑
i=1

φ(npi), s.t.
n∑
i=1

pim(x, θ) = 0,
n∑
i=1

pi = 1, θ ∈ Θ.

So the GMC estimator for θ is defined as

θ̂ = arg min
θ∈Θ

inf
pi,p∈Sn−1,

∑n
i=1 pim(xi,θ)=0

1
n

n∑
i=1

φ(npi).

We can use Lagrange duality to form computationally convenient but equivalent dual represen-
tation of GMC estimator

θ̂ = arg min
θ∈Θ

max
γ∈R,λ∈Rq

[
γ −

n∑
i=1

φ∗(γ + λ′m(x, θ)

]
.

1Function f∗(y) is convex conjugate of f
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Now different choices of function φ(x) yield different estimators. If we set φ(x) = − log(x) the
GMC estimator is empirical likelihood estimator

θ̂ = arg min
θ∈Θ

inf
pi,p∈Sn−1,

∑n
i=1 pim(xi,θ)=0

1
n

n∑
i=1

− log(npi)

or

θ̂ = arg min
θ∈Θ

max
γ∈R,λ∈Rq

[
γ + 1 +

1
n

n∑
i=1

log(−γ − λ′m(xi, θ))

]

= arg min
θ∈Θ

max
λ∈Rq

[
1
n

n∑
i=1

log(1 + λ′m(xi, θ))

]
(9)

in convenient dual representation.

2.4 Euclidean Empirical Likelihood

Quadratic choice of φ(x) = 1
2(x2 − 1) in (5) implies so called Euclidean Likelihood [Owe01],

where the nonparametric likelihood function is in its position of objective function replaced by
the euclidean distance 1

2n

∑n
i=1(npi− 1)2; cf. [BC98]. For euclidean distance an explicit solution

of the inner loop exists that significantly reduces the computational burden. Euclidean likelihood
is in fact quadratic approximation of empirical likelihood, as is shown below.

The EL problem is to maximize

l(θ) = min
pi,p∈Sn−1,

∑n
i=1 pim(xi,θ)=0

[
−

n∑
i=1

1
n

log(npi)

]
=

[
1
n

n∑
i=1

log(1 + λ′m(xi, θ))

]
(10)

over θ, where λ = arg maxλ∈D
∑n

i=1 log(1 + λ′m(xi, θ)) and D = {λ|1 + λ′m(xi, θ) > 0}. For
short m(xi, θ) the first argument of m is ommited.

Expand l(θ) using Taylor series near pi = 1
n

l(θ) =
n∑
i=1

(
pi −

1
n

)
+

1
2n

n∑
i=1

n2

(
pi −

1
n

)2

+ . . . (11)

The dominant term of l(θ) is 1
2n

∑n
i=1(npi − 1)2.

Euclidean Empirical Likelihood is defined as
eel(θ) = minpi,p∈Sn−1,

∑n
i=1 pim(xi,θ)=0

∑n
i=1(npi − 1)2.

Thanks to its quadratic form an explicit solution for the the inner loop exists. Indeed, since∑n
i=1(npi − 1)2 = n2

∑n
i=1 p

2
i − n, our optimization problem is

max
pi

n∑
i=1

p2
i , s.t.

n∑
i=1

pi = 1,
n∑
i=1

pimi(θ) = 0 ∀i : pi > 0.

Writing down Lagrangian, where αj are Lagrange multipliers yields

L(p, α) =
n∑
i=1

p2
i + α0

(
n∑
i=1

pi − 1

)
+ α′

n∑
i=1

pimi(θ).

From the first order conditions it can be seen that

pi = −

α0 +
q∑
j=1

αjmij(θ)

 . (12)
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Denote ᾱ′ = (α0, α1, ..., αq),Vj =
∑n

i=1mij(θ),V ′ = (V1, ..., Vq),R = (Rjj′)q×q and Rjj′ =∑n
i=1mij(θ)mij′(θ).
Conditions

n∑
i=1

pi = 1
n∑
i=1

pimi(θ) = 0

can be rewritten in matrix form as (there we introduce e1 and B)

e1 = (1 0 . . . 0)′ = −1
2

(
n V ′

V R

)
α = −1

2
Bα.

Rewriting (12) yields

pi = (1,m′i(θ))B
−1e1 =

1
n

+
1
n

(
1
n
V −mi(θ)

)′
H−1V,

where H = R− n−1V V T .
Using simple algebra it can be shown [BC98], that

eel(θ) = V ′H−1V,

so Maximum Euclidean Empirical Likelihood estimator is

θ̂EEL = arg min
θ∈Θ

eel(θ) = arg min
θ∈Θ

V ′H−1V.

3 Interest Rate Models

This chapter introduces three interest rate models, for which we are interested in parameters
estimation. Evolution of interest rates is driven by the time and random components.

3.1 Short term interest rate

Riskless bond is the base of the pricing of all financial derivatives. The prices of the riskless
bonds on the market determines the term structure of the interest rates R(t, T ) [eSM09]

P (t, T ) = e−R(t,T )(T−t), (13)

where P (t, T ) is the price of the bond at time t which pays one unit at the maturity time T and
R(t, T ) is the corresponding interest rate

R(t, T ) = − logP (t, T )
T − t

.

Then short term interest rate or short rate is defined as the starting point of the term structure
of the interest rate

rt = lim
t→T

R(t, T ).

Term structure of interest rates is usually named by the capital of the country e.g. LI-
BOR (London Interbank Offered Rate), PRIBOR (Praha Interbank Offered Rate) or BRIBOR
(Bratislava Interbank Offered Rate). Depending on the maturity, term structure of interest rates
can have different shapes [eSM09].
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3.2 Vasicek model

Vasicek model for instantenous interest rates was introduced by Oldrich Vasicek in 1977 [Vas77].
This process has interesting mean reversion property, which causes that interest rate cannot rise
to infinity

drt = (δ − κrt)dt+ σdWt.

Given the information about the interest rate in time t-rt, using Itô lemma one can derive
the conditional density, which is normal with the following mean and variance (we set time
increment τ = 1):

E(rt+1|rt, t > 0) = rte
−κ +

δ(1− e−κ)
κ

, (14)

V ar(rt+1|rt, t > 0) =
σ2(1− e−2κ)2

2κ
.

0 10 20 30 40 50
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Three simulations of Vasicek model δ = 0.03, κ = 0.5 and σ = 0.0367. Vasicek model allows rt to drop
below zero.

3.3 Cox-Ingersol-Ross model

Cox-Ingersol-Ross model (CIR) is short-term interest rate model which was developed in 1985
[CIR85]. The economic theory behind this model involves anticipations, risk aversion, investment
alternatives and preferences about the timing of consumption. All these factors determine bond
prices [CIR85].

Random component in CIR is represented by the Wiener process increment

drt = (δ − κrt)dt+ σ
√
rtdWt. (15)

Parameters in this equation are positive, δ > 0, κ > 0, σ > 0.
CIR captures two important properties of real short-term interest rate dynamics:

• Mean reversion - interest rate tends to fluctuate over long-run trend δ/κ,

9
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• Volatility is not constant, but increases with interest rate rt.

In order to estimate the parameters of this model by maximum likelihood method, it is
necessary to find conditional density function. This was done in [CIR85]:

f(rt+τ |rt, t ≥ 0, τ > 0) = ce−c(u+rt+τ )
(rt+τ

u

)q/2
Iq(2c

√
urt+τ ), (16)

c =
2κ

σ2(1− e−κτ )
, u = rte

κτ , q =
2δ

σ2 − 1
,

where Iq(·) denotes the Bessel function of the first kind of order q. If we set τ = 1, then the
conditional mean and conditional variance are

E(rt+1|rt, t > 0) = rte
−κ +

δ(1− e−κ)
κ

, (17)

V ar(rt+1|rt, t > 0) =
rtσ

2e−κ(1− e−κ)
κ

+
σ2δ(1− e−κ)2

2κ2
.

If we want to simulate data that follows CIR dynamics, we use the fact that 2crt+1|rt ∼
χ2(2q+ 2, 2cu). Zhou [Zho01] recommends to discard some data from the beginning so that the
interest rate series can ”forget” its initial value r0.

The steady state density of the CIR model is

f(r0) =
wv

Γ(v)
rv−1

0 exp(−wr0), (18)

where
v =

2δ
σ2

, w =
2κ
σ2
.

Mean and variance of this marginal density are

E(r0) =
δ

κ
, (19)

V ar(r0) =
σ2δ

2κ2
. (20)

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

Three simulations of CIR model δ = 0.03, κ = 0.5 and σ = 0.15. Decreasing rt diminishes the volatility.
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3.4 Vasicek Exponential Jump model

Vasicek Exponential Jumps model (VEJ) was proposed by Das and Foresi [DF96] (1996). In
the model, size of random jumps is exponentially distributed, distribution of direction of the
jumps is binomial and the frequency of these jumps is represented by the Poisson increment.
These jumps can model higher order moments of the conditional distribution. Note that for
Vasicek model (3.2) conditional density is normally distributed, therefore skewness and kurtosis
are equal to 0 and 3, respectively. In practice, however, normality of data is usually not the case;
[DF96].

Short term interest rate in VEJ satisfies the following stochastic differential equation

drt = (δ − κrt)dt+ σdWt + JtdNt,

|Jt| ∼ Exp(α), sign(Jt) ∼ Bin(β), Nt ∼ Poi(λ).
Despite the fact that the conditional density cannot be obtained in explicit form, the Con-

ditional Characteristic Function [DF96] can be obtained explicitly, and consequently utilized for
estimation of the model parameters; cf. [LN08]. More details can be found in chapter 6.

0 10 20 30 40 50
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

Three simulations o VEJ CIR model θ = 0.02949, κ = 0.00283, σ = 0.022, α = 0.1, β = 1 and
λ = 0.28846. Note that β = 1 causes that there are only upward jumps.

4 Small sample properties of different estimators of parameters
of Vasicek and CIR models

Small sample properties of possible estimators of of parameters of Vasicek and CIR models
can be obtained by means of a Monte Carlo study. Zhou [Zho01] performed an extensive MC
comparison of Efficient Method of Moments (EMM) with other estimation methods. Zhou has
not included into studied semi-parametric methods the Empirical likelihood method, which we
do here.
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4.1 Estimators

4.1.1 Maximum Likelihood Estimator

Since the underlying conditional distribution are known, (14 and 16) the information can be fully
utilized in parameter estimation by ML method, which maximizes the log-likelihood function.

Suppose we observe x1, ..., xn from the distribution with probability density function f(x|θ)

θ̂ML = arg max
θ∈Θ

n∑
i=1

log f(xi|θ).

We will be able to compare our estimators with the asympotical efficient ML, which will be
the base of our comparison.

4.1.2 Quasi-Maximum Likelihood Estimator

QML assumes that the distribution is normal with the conditional mean and conditional variance
given at (14 and 17)

θ̂QML = arg max
θ∈Θ

n∑
i=1

log f(xi|θ), f(x) =
1√
2πσ

e−
(x−µ)

2σ2 .

In the case of Vasicek model, the conditional density is normal, hence QML and ML coincide.

4.1.3 Maximum Empirical Likelihood Estimator

To form a model, estimating equations from [Zho01]:

mt(θ) =


rt+1 − E(rt+1|rt)

rt [rt+1 − E(rt+1|rt)]
V (rt+1|rt)− [rt+1 − E(rt+1|rt)]2

rt

{
V (rt+1|rt)− [rt+1 − E(rt+1|rt)]2

}
 . (21)

were used. The estimating equations utilize the explicit form of conditional mean and conditional
variance shown in section 3.3. Unconditional moments are constructed from the conditional ones.
We know that

E(rt+1|rt) = 0⇒ E(rt+1|g(rt)) = 0.

So that choices g(x) = 0 and g(x) = x lead to estimating equations (21).
MEL estimator (10) is given as (θ = [δ, κ, σ])

θ̂EL = arg min
θ∈Θ

max
λ∈Rq

[
1
n

n∑
i=1

log∗(1 + λ′mi(θ))

]
.

4.1.4 Maximum Euclidean Empirical Likelihood Estimator

The detailed derivation of EEL is in section 2.4

θ̂EEL = arg min
θ∈Θ

eel(θ) = arg min
θ∈Θ

V ′H−1V,

where Vj =
∑n

i=1mij(θ),V ′ = (V1, ..., Vq),R = (Rjj′)q×q and Rjj′ =
∑n

i=1mij(θ)mij′(θ). We
encountered singularity problems. Similar problems were noted in [BC98] where GMM was
used; and it is known that EEL and GMM are closely related methods. To avoid it, we used

12
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the Moore-Penrose pseudoinverse [Pen55] 2. The same moments 21 (the same information) were
used as in the MEL case.

A connection between Continuous GMM and EEL is discussed in [Kit01].

4.2 Monte Carlo simulation results

A 2000 samples of interest-rate series of length 1000 were generated by CIR and Vasicek model,
with parameter values δ = 0.03, κ = 0.5, σ = 0.15 for CIR. These values, according to Ait-Sahalia
[AS02], fit in with the US interest rates. For Vasicek model the same values of δ = 0.03, κ = 0.5

were used, but the diffusion parameter was changed into σ = 0.15
√

δ
κ = 0.0367 so that it takes

into account the long run trend. Then both CIR and Vasicek model yield similar interest rate
series. Simulations were performed in Matlab 7.7.0 on CPU T2130 with 2GB RAM. For all the
estimators the true parameters [0.03 0.5 0.0367] (Vasicek model) and [0.03 0.5 0.15] (CIR model)
were used as starting points in the numerical optimization.

Results are in the following tables

Vasicek Model

True values δ = 0.03 κ = 0.5 and σ = 0.0367
ML MEL EEL

Mean Bias
δ 4.1495E-004 4.2457E-004 4.2252E-004
κ 6.4294E-003 6.5863E-003 6.5411E-003
σ 5.6962E-005 5.5853E-005 -1.1096E-005
Standard deviation
δ 2.8175E-003 2.8287E-003 2.8322E-003
κ 4.2991E-002 4.3189E-002 4.3282E-002
σ 1.0568E-003 1.0612E-003 1.0617E-003
RMSE
δ 2.8478E-003 2.8604E-003 2.8635E-003
κ 4.3469E-002 4.3689E-002 4.3773E-002
σ 1.0583E-003 1.0627E-003 1.0618E-003

2Moore-Penrose pseudoinverse of real valued matrix A is defined as the matrix A+ satisfying following criteria:
i. AA+A = A
ii. A+AA+ = A
iii. (AA+)′ = AA+

iv. (A+A)′ = A+A .
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Cox-Ingersoll-Ross Model

True values δ = 0.03 κ = 0.5 and σ = 0.15
ML QML MEL EEL

Mean Bias
δ 2.8216E-004 3.1435E-004 3.3184E-004 3.3701E-004
κ 6.0902E-003 6.6657E-003 7.2612E-003 8.3903E-003
σ 1.7335E-004 1.4081E-004 2.4684E-004 -6.7843E-005
Standard deviation
δ 2.3778E-003 2.8270E-003 2.8866E-003 2.8721E-003
κ 4.3983E-002 5.1322E-002 5.1985E-002 5.1731E-002
σ 4.3338E-003 4.9144E-003 4.8903E-003 4.8733E-003
RMSE
δ 2.3944E-003 2.8445E-003 2.9056E-003 2.8919E-003
κ 4.4402E-002 5.1752E-002 5.2489E-002 5.2407E-002
σ 4.3372E-003 4.9164E-003 4.8965E-003 4.8738E-003

The results are in accord with asymptotic efficiency of ML, as expected. Interestingly, for the
diffusion parameter δ, EEL provided the best absolute mean bias, even better than ML. MEL
and EEL provide competitive performance to QML. In our opinion the advantage of these two
methods is clearer intuition behind the semi-parametric EL approach.

A table below shows the approximated mean CPU time for every parameter estimation.

CPU time in seconds

Vasicek Model
ML MEL EEL

0.1594 3.8919 5.9029
Cox-Ingersoll-Ross Model

ML QML MEL EEL
1.0066 0.1654 3.9534 5.8267

Replacing inversion by the Moore-Penrose pseudoinversion in computation of EEL increased
CPU time and consequently diminished the computational advantage of EEL. Another interest-
ing fact is that QML estimation was extremely fast.

4.3 Sensitivity to starting point

To test how robust are the estimation techniques to choice of starting point, we used different
starting points, keeping an interest rate series fixed. This is important if the next step is a
calibration of the model on a real data. All estimation methods ML, QML, EL and EEL were
very resistant to change of starting point. An instability started to occur when the diffusion
parameter was very low, close to zero (6% of the original value). In these cases ML and QML
failed to converge and diffusion parameter in EEL was estimated with opposite sign. This might
indicate an advantage of MEL, since insensitivity to choice of starting point might be crucial
when calibrating the model on real data.

14
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5 Real-Data calibration

Euro Overnight Index Average (EONIA) was chosen for calibration of CIR model. The period
is from 1.1.2008 to 6.10.2008 (200 working days). Note that the steep fall in interest rate caused
by financial crisis after the September is omitted, since non-standard techniques has to be used
to model non-standard behavior of the real world.

0 50 100 150 200 250
0.02

0.025

0.03

0.035

0.04

0.045

0.05
EONIA 2008

EONIA series for year 2008, red part is omitted from the estimation.

5.1 Starting point

When calibrating real data, choice of the starting point is crucial. We use Ordinary Least Squares
Estimate (OLS) on discretized version of (15), Matlab implementation is done in [Kla07], time
increment is set to 1.

rt+1 − rt = (δ − κrt) + σ
√
rtεt, (22)

where εt is a white noise.
Equation (22) can be transformed into

rt+1 − rt√
rt

=
δ
√
rt
− κ
√
rt + σεt. (23)

The initial estimates of δ and κ can be found by minimization of the residual sum of squares

(δ̂, κ̂) = arg min
δ,κ

N−1∑
t=1

(
rt+1 − rt√

rt
− δ
√
rt

+ κ
√
rt

)2

, (24)

and the diffusion parameter σ is estimated as the standard deviation of residuals. Using basic
algebra we obtain the initial estimates (δ̂, κ̂, σ̂)

δ̂ =
(N − 1)

∑N−1
t=1 rt+1 −

∑N−1
t=1

rt+1

rt

∑N−1
t=1 rt

N2 − 2N + 1−
∑N−1

t=1 rt
∑N−1

t=1
1
rt

,

κ̂ =
N2 − 2N + 1 +

∑N−1
t=1 rt+1

∑N−1
t=1

1
rt
−
∑N−1

t=1 rt
∑N−1

t=1
1
rt
− (N − 1)

∑N−1
t=1

rt+1

rt

N2 − 2N + 1−
∑N−1

t=1 rt
∑N−1

t=1
1
rt

,

σ̂ =

√√√√ 1
N − 2

N−1∑
t=1

(
rt+1 − rt√

rt
− δ̂
√
rt

+ κ̂
√
rt

)2

.

5.2 Estimation Results

As it was pointed out by Kladivko [Kla07], numerical issues might arise when using function
besseli(.,.) in Maximum Likelihood estimation. Kladivko suggests to use directly density of
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non-central chi-square distribution, which is implemented in Matlab as a function ncx2pdf(.,.).
This increased stability of ML.

Results from the estimations are in the following table:

EONIA 2008 - CIR

start(OLS) ML QML MEL EEL
δ 0.01020 0.01159 0.01175 0.01042 0.01113
κ 0.24819 0.28203 0.28581 0.25352 0.27137
σ 0.00514 0.00586 0.00589 0.00574 0.00579

The next table compares mean and standard deviation of the data with the marginal (steady
state) mean and variance standard deviation using (19) for different estimators. Note that for
”good” estimators these values should approximately match.

Real and implied mean and standard deviation

DATA start(OLS) ML QML MEL EEL
mean 0.04107 0.04110 0.04110 0.04110 0.04110 0.04102
st. dev. 0.001616 0.001480 0.001582 0.001578 0.001635 0.001592

MEL is slightly different from other estimators, but implied standard deviation is closer to
the one computed from data. Conclusion of this calibration is that MEL and EEL provided
reasonable alternative to ML and QML.

6 Estimation of parameters of VEJ model by EL with condi-
tional characteristic function

Not for all models of interest rate the conditional density can be obtained in explicit form. Con-
sequently, it is not possible to rely on Maximum Likelihood method for estimation of parameters
of the models. However, if there is an information in form of estimating equations, it can be
exploited for estimation by the Empirical Likelihood method. For some interest rate models for
which there is no explicit form of conditional density, there might be explicit form of Conditional
Characteristic Function (CFF) which can be utilized in formulating a set of estimating equa-
tions. For instance Vasicek Exponential Jump 3.4 model is such a model and we will show this
approach on VEJ. The idea of combining EL with estimating equations based on CCF comes
from [LN08].

Define CCF of process as

ψ(ω, τ |θ, rt) = Eθ(eiωrt+τ |rt).

Note that there is one-to-one correspondence between CCF and underlying conditional den-
sity, therefore CCF captures all the information about the dynamics of the interest rate move-
ment. According to Das and Foresi [DF96], CCF of the VEJ takes the following form (time
increment τ was set to 0)

ψ(ω|θ, rt) = e(A(ω)+B(ω)rt), A(ω) =
iωδ

κ
(1− e−κ)− ω2σ2

4κ
(
1− e−2κ

)
+
iλ(1− 2β)

κ
(arctan(ωαe−κ)− arctan(ωα)) +

λ

2κ
log
(

1 + ω2α2e−2κ

1 + ω2α2

)
,
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B(ω) = iωe−κ,

where β was set to 1, so that there are only upward jumps.
Once we know CCF we can construct following conditional moments

E [<(ψ(ω|ω, rt)− exp(iωrt+1))|rt] = 0,
E [=(ψ(ω|ω, rt)− exp(iω, rt+1))|rt] = 0,

so both real an imaginary part must equal zero.
The idea of approximating conditional moments by the sequence of unconditional ones comes

from Donald et al. [DIN03].
Intuition behind this is expressed by this impication:

E(rt+1|rt) = 0⇒ E(rt+1|g(rt)) = 0.

So the information about CCF can be transformed into unconditional moment restrictions [LN08]

E [Re(ψ(ω|ω, rt)− exp(iωrt+1))⊗ qK(rt)] = 0,
E [Im(ψ(ω|ω, rt)− exp(iωrt+1))⊗ qK(rt)] = 0,

where ⊗ denotes kronecker product and qK(x) is vector of approximating functions. In [LN08],
qK(x) is chosen as follows

qK(x) = (1, 2, x2, x3, 1x−s1(x− s1)3, . . . , 1x−sK−3−1(x− sK−3−1)3),

where si are the points set empirically.
Note that several things are subject to empirical choice in this estimation method:

• we have to choose vector of approximating functions (qK and si)

• we need to decide in which ω will we evaluate the moment functions ([LN08] set ω =
[0.1 0.3 0.7 1.1 1.5])

• we need to choose appropriate time increment and sample size, since the computation is
numerically very demanding.

Computing MEL using the information about CCF on real data might be challenging, but
nowadays computational complexity allows us to provide it only on simulated data. The starting
point in the optimization had to be very close, so it was set directly as the parameter from
simulation.

We tried to move the starting point and found out that for the one fixed interest rate series
even a very slight change (0.1%) of the starting value lead to different function values. In the
light of these facts there might be a doubt whether the computed values are true MEL. Several
reasons can explain these finding 3:

• The objective function for MEL is very flat

• We do not know the shape of the objective function with parameters faraway from the true
values

• It is dificult to estimate a jump process because the intensity is low, we can not observe so
many jumps

• The process do not satisfies the assumptions of asymptotic theory

• Maybe we need better optimization tool.

Therefore when the closed form of conditional mean and conditional variance are known,
we propose using moments from 4.1.3 instead of those based on CCF, since the former lead to
estimation method which is more stable and reliable.

3The author is grateful to Dr. Q. Liu for these (and many other) helpful comments.
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7 Summary

This work explores possible applications of Empirical Likelihood for estimation of parameters of
interest rate diffusion processes.

A Monte Carlo study of small sample properties was conducted in order to compare per-
formance of the Maximum Likelihood and Quasi Maximum Likelihood estimators with that of
Maximum Empirical Likelihood and Euclidean Empirical Likelihood estimators under condi-
tional mean and variance estimating equations. This was done for both Vasicek’s model and
Cox-Ingersoll-Ross model.

Singularity problems in computations of Euclidean Empirical Likelihood were resolved by
means of the Moore-Penrose pseudoinverse, which, in turn, adversely affected speed of com-
putation of the estimator. The Monte Carlo study revealed that both MEL and EEL provide
competitive performance compared to asymptotically efficient parametric ML. Furthermore MEL
appeared to be more stable than ML in some scenarios.

Calibration of EONIA interest rates for year 2008 indicates that MEL and EEL can be
considered as a competitive alternative to widely used ML and QML.

Finally, it was shown that a recent application [LN08] of EL with estimating equations that
are based on Conditional Characteristic Function faces a serious numerical instability problem,
which renders results of the simulation study presented in [LN08] unreliable.
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