LELEK'S CONJECTURE

Dana Bartošová
Univerzita Karlova v Praze
Matematicko-fyzikální fakulta
Katedra teoretické informatiky a matematické logiky

Sekce: Matematické struktury - Algebra, topologie a geometrie

Abstract

Lelek's conjecture which states that metric continua with span zero are chainable has been one of the most widely investigated problems in continuum theory over the past 40 years. We broaden our field of interest to non-metric continua and prove that if there is a non-metric counterexample to Lelek's conjecture we can convert it to a metric one. For a continuum X we take the lattice of all of its closed subsets 2^{X} and consider a countable elementary sublattice L of 2^{X} that we represent by a metric continuum $w L$ via the Wallman representation for distributive lattices. By means of set theory, we obtain an L such that X is not chainable if and only if $w L$ is not chainable and X has span zero if and only if $w L$ has span zero. In the proof of the latter we use Shelah's theorem stating that every two elementarily equivalent models have isomorphic ultrapowers.
Keywords: Chainability, span, elementarity

Contents

1 Introduction 4
2 Preliminaries 7
2.1 Lattices 7
2.2 Wallman's representation theorem 9
2.3 Elementarity and ultra(co)products 11
2.4 Elementary sublattices 16
3 Chainability, span and their reflection 20
3.1 Chainability 20
3.2 Span 22
3.3 Reflection 24
4 Questions 31
Bibliography 33
Index 36

1 Introduction

In the past 40 years, Lelek's conjecture which states that metric continua with span zero are chainable has been one of the most widely investigated problems in continuum theory.

In his article [21], A. Lelek describes the span for metric spaces as follows:
"The span of a metric space is the least upper bound of numbers α such that, roughly speaking, two points can move over the same portion of the space keeping a distance at least α from each other. The surjective span is obtained if it is required that, in addition, the whole space be covered by each of the moving points. These geometric ideas turn out to be important in continua theory."

More formally, the span of a compact metric space (X, d) is the supremum of all numbers α such that there exists a subcontinuum Z of the square $X \times X$ projecting on both axes on the same set with $d(x, y) \geq \alpha$ for all $(x, y) \in Z$. Span was first defined by Lelek in [19] in a more general setting of mappings. In the same article, he proved that chainable implies span zero and the span zero implies atriodic and dimension 1. Later ([20]), he raised the following question

Question 1 (Lelek). Are metric continua having span zero chainable?
A positive answer to this question would solve the classification problem of homogeneous plane continua ([27]).

Hence, much effort has been exerted to examine the span of metric continua. None of the properties observed so far is known to provide the answer to Lelek's question, although several weaker results have been obtained, many of them using weaker variants of span (the first three are due to Lelek, the last one is due to Davis)

- semispan - the condition on the subcontinuum Z in the definition of span is relaxed to one projection being a subset of the other one,
- surjective span $-Z$ projects onto X in both coordinates
- surjective semispan - Z projects onto X in at least one coordinate
- symmetric span - Z is symmetric, which means that with every $(x, y) \in$ Z also $(y, x) \in Z$.

Using the null-homotopy of mappings from spaces with span zero to onedimensional polyhedra, Lelek deduced that the continua of span zero are tree-like (an inverse limit of connected graphs; see [23]). However, not every atriodic tree-like continuum has span zero (see [16]).

Further, span zero is preserved by inverse limits, and continua with span zero are weakly chainable (a continuous image of the pseudoarc; see [28]).
(Surjective) span and (surjective) semispan are not equal in general ([22]). But (surjective) span zero and (surjective) semispan zero are equivalent ([8]), which is essential in many results on span (for instance [7, 9, 11]).

It is an open problem whether chainabiliy or span zero are preserved by confluent mappings. A mapping $f: X \rightarrow Y$ is confluent if every component of a preimage of a subcontinuum C of Y maps onto C. Oversteegen gave a partial answer to the second part of this problem in [26] by proving that if a hereditarily indecomposable continuum X has span zero and $f: X \rightarrow Y$ is a continuous surjective mapping whose square $f \times f$ is confluent, then Y has span zero as well. Duda ([10]) generalized the result to all continua under the condition that both f and its square $f \times f$ are confluent.

Striving for a counterexample to Question 1, we broaden our field of search to non-metric continua. In chapter 3, we show that if there is a non-metric counterexample, we can convert it to a metric one using a combination of topology, lattice theory, model theory and set theory. Having a continuum X, we consider a countable elementary sublattice L of the lattice 2^{X} of all closed subsets of X and assign to L a metric continuum $w L$ that has a base for closed subsets isomorphic to L. The points of the space $w L$ are ultrafilters on L and the closed sets for the topology are generated by the sets of the form $U(a)$ for $a \in L$, where $U(a)$ consists of the ultrafilters to which a belongs. This construction is due to Wallman ([31]). It is not surprising that the space $w L$ shares many properties with X. However, we were not able to show that whenever X is non-chainable and of span zero, then so is $w L$. Luckily, restricting ourselves to "special" elementary sublattices, we achieve the desired result. To obtain the "special" elementary sublattices, we consider the sets $H(\theta)$ (see [18]) that model ZFC-P (Zermelo-Frankel set
theory with the Axiom of Choice and without the Power Set Axiom) and take a countable elementary submodel \mathcal{M} of $H(\theta)$ containing 2^{X} as its element. Then $L=\mathcal{M} \cap 2^{X}$ is a countable elementary sublattice of 2^{X} of which we know more than a general elementary sublattice. If $K=\mathcal{M} \cap 2^{X \times X}$, then $w L \times w L$ and $w K$ are homeomorphic. Knowing that, we are ready to prove that if X is not chainable, neither is $w L$ (Theorem 3.3.4, originally from [30]) and if X has span zero then so does $w L$ (Theorem 3.3.6).

In the proof of Theorem 3.3.6 on reflection of span zero, we use the statement that every two elementarily equivalent models have isomorphic ultrapowers, which is a generalization of Keisler's theorem ([17]) made by Shelah ([29]). For the purpose of the continuum theory it was first used by Gurevič([13]). We apply it to an elementary embedding $f: K \rightarrow 2^{X \times X}$ for a continuum X, where $K=\mathcal{M} \cap 2^{X \times X}$ for an elementary submodel \mathcal{M} of $H(\theta)$. Shelah's theorem provides an ultrafilter \mathcal{U} and an isomorphism $h: \prod_{\mathcal{U}} K \rightarrow \prod_{\mathcal{U}} 2^{X \times X}$ such that $h \circ \Delta=\Delta \circ f$, where Δ denotes the elementary embedding of a structure into its ultrapower. Applying the Wallman's representation for lattices, which can be extended to lattice homomorphisms, we get an onto mapping $w(f): X \times X \rightarrow w K$ and a homeomorphism $w(h)$: $w\left(\prod_{\mathcal{U}} 2^{X \times X}\right) \rightarrow w\left(\prod_{\mathcal{U}} K\right)$ such that $w(h) \circ w(\Delta)=w(\Delta) \circ w(f)$. The mapping $w(\Delta)$ is called a codiagonal map and denoted by ∇, and $w\left(\prod_{\mathcal{U}} 2^{X \times X}\right)$ is called the ultracopower of $X \times X$ and denoted by $\sum_{\mathcal{U}} X \times X$ (widely studied by Bankston; [2, 3, 4]). We show that if $Z \subset w L \times w L=w K$ witnesses some kind of span non-zero in $w L\left(L=\mathcal{M} \cap 2^{X}\right)$, then $\nabla \circ w(h)^{-1}\left[\sum_{\mathcal{U}} Z\right]$ witnesses the same kind of span non-zero in X.

2 Preliminaries

Lattice theory combined with model theory is recognized to be a powerful tool in the study of compact (Hausdorff) spaces. We are particularly interested in continua, by which we mean connected compact Hausdorff spaces. A space is connected if it cannot be written as a disjoint union of two non-empty open sets.

2.1 Lattices

Definition 2.1.1 (Lattice). A partially ordered set (L, \leq) is called a lattice if every two elements $a, b \in L$ have a supremum (also called join and denoted by $a \sqcup b$) and infimum (called meet and denoted by $a \sqcap b$) in L. A lattice is called bounded if it has a smallest and a largest element, usually denoted by 0 and 1 respectively. Every lattice can be made into a bounded lattice by adding the greatest and the least element to the lattice.

Definition 2.1.2 (Lattice algebra). An algebra (L, \sqcup, \sqcap), where \sqcup and \sqcap are binary operations, is called a lattice algebra if every three elements $a, b, c \in L$ satisfy the following equalities:

$$
\begin{array}{r}
a \sqcup a=a \\
a \sqcap a=a \\
a \sqcup b=b \sqcup a \\
a \sqcap b=b \sqcap a \\
a \sqcup(b \sqcup c)=(a \sqcup b) \sqcup c \\
a \sqcap(b \sqcap c)=(a \sqcap b) \sqcap c \\
a \sqcup(a \sqcap b)=a \sqcap(a \sqcup b)=a \tag{2.4}
\end{array}
$$

A lattice algebra with constants $\mathbf{0}, \mathbf{1}$ satisfying

$$
\begin{align*}
& a \sqcup \mathbf{0}=a \text { and } a \sqcap \mathbf{0}=\mathbf{0} \tag{2.5}\\
& a \sqcup \mathbf{1}=\mathbf{1} \text { and } a \sqcap \mathbf{1}=a \tag{2.6}
\end{align*}
$$

is called a bounded lattice algebra.
In other words, a (bounded) lattice algebra is a structure for the language $\{\sqcup, \sqcap\}(\{\sqcup, \sqcap, \mathbf{0}, \mathbf{1}\})$ that models the universal closure of the formulae above.

Lemma 2.1.3. Every (bounded) lattice satisfies the equalities in the definition of (bounded) lattice algebra. If L is a lattice algebra, then putting $a \leq b$ if and only if $a \sqcup b=b$ (or equivalently $a \sqcap b=a$), we obtain a lattice order $' \leq$ ' on L. If L is bounded, then \mathbf{O} and $\mathbf{1}$ are the smallest and the largest elements of (L, \leq)

In what follows, by lattice L we mean a bounded lattice (L, \leq) (or equivalently a bounded lattice algebra ($L, \sqcup, \sqcap, \mathbf{0}, \mathbf{1})$).
Example 2.1.4. Let X be a topological space and let 2^{X} denote the set of all its closed subsets. Then 2^{X} with the operations union and intersection, and constants empty set and X forms a lattice. The order in this lattice is given by set inclusion. Every base for the closed sets in X closed under finite unions and finite intersections is an example of a sublattice of 2^{X}. In what follows we call such a base a lattice base.

If a lattice L has the following three properties, then we can find a compact Hausdorff space that has a lattice base isomorphic to L.

Definition 2.1.5 (Distributive lattice). A lattice L is called distributive if for every triple $a, b, c \in L$ the following equation holds:

$$
\begin{equation*}
a \sqcup(b \sqcap c)=(a \sqcup b) \sqcap(a \sqcup c), \tag{2.7}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
a \sqcap(b \sqcup c)=(a \sqcap b) \sqcup(a \sqcap c) \tag{2.8}
\end{equation*}
$$

Definition 2.1.6 (Disjunctive lattice). A lattice L is called disjunctive if it models the sentence

$$
\forall a b \exists c(a \not \leq b \rightarrow c \neq \mathbf{0} \wedge c \leq a \wedge b \sqcap c=\mathbf{0}) .
$$

Definition 2.1.7 (Normal lattice). A lattice L is called normal if it models the sentence

$$
\forall a b \exists c d(a \sqcap b=\mathbf{0} \rightarrow a \sqcap d=\mathbf{0} \wedge b \sqcap c=\mathbf{0} \wedge c \sqcup d=\mathbf{1}) .
$$

The underlying set of the space assigned to L will be the set of all ultrafilters on the lattice L.

Definition 2.1.8 ((Ultra)filter).

- We call a non-empty subset \mathcal{F} of a lattice L a filter on L if it satisfies the following conditions:
(i) if $a \in \mathcal{F}, b \in L$ and $a \leq b$ then $b \in \mathcal{F}$,
(ii) if $a, b \in \mathcal{F}$ then $a \sqcap b \in \mathcal{F}$.
- A filter on L is proper if it is not equal to L.
- A filter \mathcal{F} is called prime if $a \sqcup b \in \mathcal{F}$ implies $a \in \mathcal{F}$ or $b \in \mathcal{F}$.
- A proper filter is called maximal (or an ultrafilter) when L contains no larger proper filters.
- For an element $a \in L$, the filter consisting of all elements of L that are larger or equal to a is called principal.

It is easy to see that every subset of a lattice closed under finite meets can be extended to an ultrafilter.

2.2 Wallman's representation theorem

In [31], H. Wallman extended the Stone duality between Boolean algebras and totally disconnected compact Hausdorff spaces, to distributive lattice and compact T_{1}-spaces. However, what he obtained is not a full duality, as it assigns to numerous lattices the same space.

Theorem 2.2.1. Let L be a distributive lattice. Then there is a compact T_{1}-space X with a base for closed sets being a homomorphic image of L. If L is also disjunctive, then X has a base for closed sets isomorphic to L. X is Hausdorff if and only if L is normal.

Proof. We take as the points of X the set of all ultrafilters on L and the sets $U(a)=\{x \in X: a \in x\}$ as a base B for the closed sets for the topology on X.

It is easy to see that for every $a, b \in L$ we have $U(a \sqcap b)=U(a) \cap U(b)$ and $U(a \sqcup b)=U(a) \cup U(b)$. Thus the map $U: L \rightarrow 2^{X}$ from L to the lattice of all closed subsets of X given by $a \mapsto U(a)$ is a homomorphism onto B. Let L be also disjunctive. For every $a \neq b$ either $a \not \leq b$ or $b \not \leq a$. Without
loss of generality assume that $a \not \leq b$. From disjunctivity, there is $c \neq \mathbf{0}$ such that $c \leq a$ and $c \sqcap b=\mathbf{0}$. Any ultrafilter that contains c contains also a but cannot contain b, hence $U(a) \neq U(b)$. So U is one-to-one onto its image, which means that L and B are isomorphic.

We show that X is compact. Let B^{\prime} be a subset of B having the finite intersection property. We have that $B^{\prime}=\left\{U(a) \mid a \in L^{\prime}\right\}$, for some $L^{\prime} \subset L$. As $U(a \sqcap b)=U(a) \cap U(b)$, all finite meets of elements from L^{\prime} are non-zero, hence there is an ultrafilter x extending L^{\prime}. Then $x \in U(a)$ for every $a \in L^{\prime}$, so $x \in \bigcap B^{\prime} \neq \emptyset$.

Since $\{U(a) \mid a \in L\}$ is a base for closed sets, $\{x\}=\bigcap\{U(a) \mid a \in x\}$. For any two distinct points x and y in X, there are $a \in x \backslash y$ and $b \in y \backslash x$. It gives that $y \in X \backslash U(a)$ whilst $x \in U(a)$ and $x \in X \backslash U(b)$ whilst $y \in U(b)$. Thus X is T_{1}.

Let L be normal. Take two distinct points in X, say x and y. For every $a \in x \backslash y$, there is $b \in y$ such that $a \sqcap b=\mathbf{0}$ (otherwise y would not be maximal). By normality, there are $c, d \in L$ such that $d \sqcap a=\mathbf{0}, c \sqcap b=\mathbf{0}$ and $c \sqcup d=1$. Obviously, $a \leq c$ and $b \leq d$. Consider open neighbourhoods $O_{1}=X \backslash U(c)$ of y and $O_{2}=X \backslash U(d)$ of x. We show that $O_{1} \cap O_{2}=\emptyset$. Suppose that there is an ultrafilter u missing both c and d, in other words, there exists $j \in u$ such that $j \sqcap c=\mathbf{0}=j \sqcap d$. From distributivity, $j=$ $j \sqcap(c \sqcup d)=(j \sqcap c) \sqcup(j \sqcap d)=\mathbf{0}$, which is a contradiction. Thus L being normal implies X being Hausdorff.

For the reverse implication, suppose that the space X is compact Hausdorff, hence normal. For any two elements $a, b \in L$ with $a \sqcap b=\mathbf{0}$, take the corresponding closed subsets $U(a)$ and $U(b)$ of X. As $U(a) \cap U(b)=U(a \sqcap b)=$ \emptyset, we can find open sets O and V from the open base $\{X \backslash A \mid A \in L\}$ such that $U(a) \subset O, U(b) \subset V$ and $O \cap V=\emptyset$. Then $X \backslash O$ and $X \backslash V$ belong to L and satisty $U(a) \cap X \backslash O=\emptyset, U(b) \cap X \backslash V=\emptyset$ and $X \backslash V \cup X \backslash O=X$. We can conclude that L is normal.

To emphasize that a space is the Wallman representation for a distributive lattice L, we will denote it $w L$. When the lattice L is isomorphic to a lattice base for closed subsets in $w L$, we use the same letter for an element of L and the corresponding closed subset of $w L$.

Given a T_{1}-space X and L any lattice base for X, then the Wallman's representation $w L$ of L is a compact space that contains X as its dense subset. We call X^{*} the Wallman-Cech compactification of X. If X is normal, then $w L$ is equal to the Čech-Stone compactification $\beta(X)$ of X.

Remark 2.2.2. If X is a compact Hausdorff space and 2^{X} the lattice of all its closed subsets, then the Wallman's representation of 2^{X} is again X (because of the finite intersection property of 2^{X}, all the ultrafilters on 2^{X} are principal). Even more is true: If B is a lattice base for X then $w B=X$: the map $x \mapsto\{b \in B \mid x \in b\}$ is a homeomorphism. The reason is that for every $a, b \in 2^{X}$ with $a \sqcap b=\mathbf{0}$ there are $c, d \in B$ such that $a \leq c, b \leq d$ and $c \sqcap d=\mathbf{0}$.

Let \mathcal{F} be a proper filter on a distributive lattice L. In the set of all filters containing \mathcal{F} we can introduce lattice operations as follows:

$$
\begin{aligned}
\mathcal{F}_{1} \sqcap \mathcal{F}_{2} & =\left\{a \sqcap b \mid a \in \mathcal{F}_{1}, b \in \mathcal{F}_{2}\right\} \\
\mathcal{F}_{1} \sqcup \mathcal{F}_{2} & =\left\{a \sqcup b \mid a \in \mathcal{F}_{1}, b \in \mathcal{F}_{2}\right\}
\end{aligned}
$$

Then the map $a \mapsto($ the filter generated by $\{a\} \cup \mathcal{F})$ is a lattice homomorphism. Let us denote the image of L under this homomorphism by L / \mathcal{F}.

Proposition 2.2.3. $w(L / \mathcal{F})$ is homeomorphic to the subspace of $w(L)$ consisting of the ultrafilters on L extending \mathcal{F}.

Wallman's representation can be extended to homomorphisms between normal distributive disjunctive lattices. Indeed, let $f: A \rightarrow B$ be such a homomorphism. For $q \in w B$, define $w(f)(q)=\{a \in A \mid f(a) \in q\}$. Then $w(f)(q)$ is a proper prime filter on A, which has a unique extension to an ultrafilter (thanks to normality). So we can think of $w(f)(q)$ as of a point in $w A$. As $w(f)^{-1}[a]=f(a)$ the map $w(f)$ is continuous. If f is one-to-one, then $w(f)$ is onto.

It is easy to verify that the Wallman's representation gives us a functor w from the category of normal distributive disjunctive lattices and latticehomomorphisms to the category of compact Hausdorff spaces and continuous functions.

2.3 Elementarity and ultra(co)products

Fix a first-order language \mathcal{L}. We denote both an \mathcal{L}-structure and its underlying set by the same letter and the cardinality of the underlying set by $|\cdot|$. For an extensive study on model theory see for instance books [6] or [15].

Definition 2.3.1. Let A and B be two structures for the language \mathcal{L}. We say that B is an elementary substructure of A (denoted by $B \prec A$) if B is a substructure of A and for every formula $\phi\left(x_{1}, \ldots, x_{n}\right)$ and $a_{1}, \ldots a_{n} \in B$

$$
B \models \phi\left[a_{1}, \ldots, a_{n}\right] \text { if and only if } A \models \phi\left[a_{1}, \ldots, a_{n}\right] .
$$

The following result provides a useful tool to verify whether an \mathcal{L}-structure is an elementary substructure of a given \mathcal{L}-structure.

Theorem 2.3.2 (Tarski's test). Let A and B be two \mathcal{L}-structures with $B \subset$ A. B is an elementary substructure of A if and only if for every formula $\phi\left(x_{1}, \ldots, x_{n}, y\right)$ and any n-tuple $\left(a_{1}, \ldots, a_{n}\right)$ from B if $A \models \exists y \phi\left[a_{1}, \ldots, a_{n}\right]$ then there is $b \in B$ such that $A \models \phi\left[a_{1}, \ldots, a_{n}, b\right]$.

The famous Löwenheim-Skolem theorem from the beginning of the 20th century states that there are many elementary substructures for every infinite structure. The proof can be found for instance in [6].

Theorem 2.3.3 (Löwenheim-Skolem). Let A be an infinite \mathcal{L}-structure and let $X \subset A$. Denote $\kappa=\max (|\mathcal{L}|,|X|)$. Then for every cardinal λ such that $\kappa \leq \lambda \leq|A|$, there exists an elementary substructure B of A such that $X \subset B$ and $|B|=\lambda$.

Definition 2.3.4 ((Ultra)filter). By a filter on a non-empty set I we mean a subset \mathcal{U} of the power set of I such that
(i) $I \in \mathcal{U}$,
(ii) if $F, G \in \mathcal{U}$ then $F \cap G \in \mathcal{U}$,
(iii) if $F \subset G \subset I$ and $F \in \mathcal{U}$ then $G \in \mathcal{U}$.

The filter \mathcal{U} is called an ultrafilter if in addition it holds
(iv) $F \in \mathcal{U}$ if and only if $I \backslash F \notin \mathcal{U}$.

Remark 2.3.5. In the section on lattices, we defined an ultrafilter to be a maximal proper filter on a lattice. That definition agrees with the one given above, since the ultrafilters on a set are exactly the maximal proper filters on the lattice of all subsets of I.

We use an ultrafilter on a set to construct an \mathcal{L}-structure (called ultraproduct) from a given family of \mathcal{L}-structures, that satisfies a first-order formula if and only if ultrafilter many members of the family satisfy the formula.

Definition 2.3.6 (Ultraproduct). Let $\left\langle A_{i} \mid i \in I\right\rangle$ be a family of \mathcal{L}-structures with I a non-empty set and let \mathcal{U} be an ultrafilter on the set I. The ultraproduct of $\left\langle A_{i} \mid i \in I\right\rangle$ is an \mathcal{L}-structure denoted by $\prod_{\mathcal{U}} A_{i}$ with the underlying set the Cartesian product $\prod_{i \in I} A_{i}$ in which we identify two functions f and $g(f \sim g)$ whenever $\{i \in I \mid f(i)=g(i)\} \in \mathcal{U}$. It is easy to see that ' \sim ' is an equivalence relation. We denote the equivalence class of the function f by $[f]_{\mathcal{U}}$.

The interpretation of the signature of \mathcal{L} in $\prod_{\mathcal{U}} A_{i}$ is as follows.
If G_{i} is the interpretation of a function symbol F of \mathcal{L} in A_{i}, define the interpretation G of F in $\prod_{\mathcal{U}} A_{i}$ by $G\left(\left[f_{1}\right]_{\mathcal{U}}, \ldots,\left[f_{n}\right]_{\mathcal{U}}\right)=[f]_{\mathcal{U}}$ if and only if $\left\{i \in I \mid G_{i}\left(f_{1}(i), \ldots, f_{n}(i)\right)=f(i)\right\} \in \mathcal{U}$.

If R_{i} is the interpretation of a relation symbol P of \mathcal{L} in A_{i}, define the interpretation R of P in $\prod_{\mathcal{U}} A_{i}$ by $R\left(\left[f_{1}\right]_{\mathcal{U}}, \ldots,\left[f_{m}\right]_{\mathcal{U}}\right)$ if and only if $\{i \in$ $\left.I \mid R_{i}\left(f_{1}(i), \ldots, f_{m}(i)\right)\right\} \in \mathcal{U}$.

If d_{i} is the interpretation of a constant c of \mathcal{L} in A_{i}, define the interpretation $[d]_{\mathcal{U}}$ of c in $\prod_{\mathcal{U}} A_{i}$ as the class of the function $d(i)=c_{i}$.

If all the structures in the family are equal to some \mathcal{L}-structure A, we call their ultraproduct an ultrapower and denote $\prod_{\mathcal{U}} A$.

For correctness of the definition, see for instance [6].
Theorem 2.3.7 (The Fundamental Theorem of Ultraproducts). For any \mathcal{L}-formula $\phi\left(x_{1}, \ldots, x_{n}\right)$ and any n-tuple $\left[f_{1}\right]_{\mathcal{U}}, \ldots,\left[f_{n}\right]_{\mathcal{U}}$ from $\prod_{\mathcal{U}} A_{i}$,

$$
\left.\prod_{\mathcal{U}} A_{i} \models \phi\left[\left[f_{1}\right]\right]_{\mathcal{U}}, \ldots,\left[f_{n}\right]_{\mathcal{U}}\right] \text { if and only if }\left\{i \in I \mid A_{i} \models \phi\left[f_{1}(i), \ldots, f_{n}(i)\right]\right\} \in \mathcal{U}
$$

Idea of the proof. The proof goes by induction on the complexity of the formula ϕ. The base step of the induction is when ϕ is an atomic formula. The complete proof is given for example in [6].

Corollary 2.3.8. The diagonal embedding of an \mathcal{L}-structure A into its ultrapower $\prod_{\mathcal{U}} A$, sending a point $a \in A$ to $\left[(a)_{i}\right]_{\mathcal{U}}$, is an elementary embedding.

The following powerful theorem saying that every two elementarily equivalent models have isomorphic ultrapowers is due to Shelah ([29]). It generalizes Keisler ([17]) who assumed the general continuum hypothesis. We will need the theorem in its full power in the proof of the reflection of span zero.

Theorem 2.3.9 (Shelah). Let κ be a cardinal, $\lambda=\min \left\{\mu \mid \kappa^{\mu}>\kappa\right\}$ and let A and B be two elementarily equivalent \mathcal{L}-structures with $\operatorname{card}(A), \operatorname{card}(B)<$ λ. Then there exists an ultrafilter \mathcal{U} over κ such that $\prod_{\mathcal{U}} A$ and $\prod_{\mathcal{U}} B$ are isomorphic.

Definition 2.3.10 (Topological ultraproduct). Let $\left\langle X_{i} \mid i \in I\right\rangle$ be a family of topological spaces, I a non-empty index set and \mathcal{U} an ultrafilter on I. The topological ultraproduct $\prod_{\mathcal{U}} X_{i}$ is the topological space whose points are the elements of the ultraproduct of the underlying sets and the topology is generated by "open ultraboxes" $\prod_{\mathcal{U}} O_{i}$, where each O_{i} is open in X_{i}. If all the spaces in the family are the same, we call their topological ultraproduct a topological ultrapower

We can define an ultraproduct in the purely categorial language as follows:
Definition 2.3.11 (Categorial ultraproduct). Let \mathcal{C} be a category, let $\left\langle C_{i}\right| i \in$ $I\rangle$ be a family of \mathcal{C}-objects and let \mathcal{U} be an ultrafilter on I. Consider the diagram consisting of objects of the form $\prod_{i \in J} C_{i}$ for $J \in \mathcal{U}$ and morphisms being the natural projections $\prod_{i \in J} C_{i} \rightarrow \prod_{i \in K} C_{i}$ for $J, K \in \mathcal{U}, J \supset K$. We call the direct limit of this diagram a categorial ultraproduct of the family $\left\langle C_{i} \mid i \in I\right\rangle$.

For the category of \mathcal{L}-structures, this definition agrees with the one given before.

However, in the category of topological spaces, the categorial ultraproduct is an indiscrete space whenever the given ultrafilter is countably incomplete. So the topological ultracoproduct usually fails to be equal to the categorial one.

On the other hand, categorial dualization of the ultraproduct notion, so called ultracoproduct, turned out to be a useful tool in the study of topological spaces.

Definition 2.3.12 (Ultracoproduct). Let \mathcal{C} be a category, let $\left\langle C_{i} \mid i \in I\right\rangle$ be a family of \mathcal{C}-objects and let \mathcal{U} be an ultrafilter on I. Consider the diagram consisting of objects of the form $\coprod_{i \in J} C_{i}$ for $J \in \mathcal{U}$ and morphisms being the
natural morphisms $\coprod_{i \in J} C_{i} \rightarrow \coprod_{i \in K} C_{i}$ for $J, K \in \mathcal{U}, J \subset K$. We call the inverse limit of this diagram a ultracoproduct of the family $\left\langle C_{i} \mid i \in I\right\rangle$ and denote it by $\sum_{\mathcal{U}} C_{i}$.

The Stone duality shows that in the category of Stone spaces, the ultracoproduct is the Stone space of the Boolean algebra which is the ultraproduct of Boolean algebras of the spaces in the diagram.

The next two lemmas give concrete descriptions of ultracoproduct in the category of compact Hausdorff spaces, first by purely topological means and the other one by Wallman's represenation theorem.

For a Tychonoff space X let $\beta(X)$ denote the Čech-Stone compactification of X.

Lemma 2.3.13. Let $\left\langle X_{i} \mid i \in I\right\rangle$ be a family of compact Hausdorff spaces with I a non-empty index set and let \mathcal{U} be an ultrafilter on I. Denote q : $\bigcup_{i \in I} X_{i} \times\{i\} \rightarrow I$ the map sending each point to its second coordinate with I taken as a discrete space. Let $\beta(q): \beta\left(\bigcup_{i \in I} X_{i} \times\{i\}\right) \rightarrow \beta(I)$ be the ČechStone lifting of q. Then the ultracoproduct of $\left\langle X_{i} \mid i \in I\right\rangle$ with respect to \mathcal{U} is homeomorphic to $(\beta(q))^{-1}[\mathcal{U}]$.

Proof. Follows from

$$
\coprod_{\mathcal{U}} X_{i}=\beta\left(\bigcup_{i \in I} X_{i} \times\{i\}\right) .
$$

Lemma 2.3.14. Let $\left\langle X_{i} \mid i \in I\right\rangle$ be a family of compact Hausdorff spaces with I a non-empty index set and let \mathcal{U} be an ultrafilter on I. Let B_{i} be a lattice base for X_{i}. Then the ultracoproduct of $\left\langle X_{i} \mid i \in I\right\rangle$ with respect to \mathcal{U} is homeomorphic to $w\left(\prod_{\mathcal{U}} B_{i}\right)$.

Proof. We saw in Section 2.2, that we can assume that B_{i} is the lattice of all closed subsets of X_{i} for every i. The ultraproduct $\prod_{i \in I} B_{i}$ forms a lattice base for $\bigcup_{i \in I} X_{i} \times\{i\}$, so $w\left(\prod_{i \in I} B_{i}\right)=\beta\left(\bigcup_{i \in I} X_{i} \times\{i\}\right)$. We can regard \mathcal{U} as a filter on $\prod_{i \in I} B_{i}$ consisting of the points $\left(b_{i}\right)_{i \in I} \in \prod_{i \in I} B_{i}$ such that $\left\{i \in I \mid b_{i}=X_{i}\right\} \in \mathcal{U}$. Then $\prod_{\mathcal{U}} B_{i}$ is isomorphic to $\prod_{i \in I} B_{i} / \mathcal{U}$ defined in Section 2.2. Proposition 2.2.3 finishes the proof.

As $\prod_{\mathcal{U}} B_{i}$ is obviously a lattice base for the topological ultraproduct $\prod_{\mathcal{U}} X_{i}$, we get the following corollary.

Corollary 2.3.15. $\sum_{\mathcal{U}} X_{i}$ is the Wallman-Čech compactifiction of $\prod_{\mathcal{U}} X_{i}$.
Next definition is a natural dualization of the diagonal embedding.
Definition 2.3.16 (Codiagonal map). Let X be a compact Hausdorff space and \mathcal{U} an ultrafilter on I. The codiagonal map $\nabla: \sum_{\mathcal{U}} X \rightarrow X$ sends a point p to x if and only if for each open neighbourhood U of x the ultrapower $\prod_{\mathcal{U}} U$ contains a member of p.

A topological and a Wallman-type description of the codiagonal map follow.

Lemma 2.3.17. Let $\beta(p): \beta(X \times I) \rightarrow \beta(X)$ be the Čech-Stone lifting of the map $p: X \times I \rightarrow X$ sending each point to its first coordinate. Then the codiagonal map is the restriction of $\beta(p)$ to the ultracoproduct.

Lemma 2.3.18. Let $\Delta: A \rightarrow \prod_{\mathcal{U}} A$ be the diagonal embedding of a distributive disjunctive normal lattice A to its ultrapower. Then $w(\Delta)=\nabla$.

Proposition 2.3.19. The clopen algebra of the ultracoproduct $\sum_{\mathcal{U}} X_{i}$ is isomorphic with the ultracoproduct of the clopen algebras of X_{i} 's. In particular, $\sum_{\mathcal{U}} X_{i}$ is connected if and only if $\left\{i \mid X_{i}\right.$ is connected $\} \in \mathcal{U}$.

Definition 2.3.20. Let $\phi_{i}: X_{i} \rightarrow Y_{i}$ for $i \in I$ be continuous mappings between continua and let \mathcal{U} be an ultrafilter on I. Let ϕ be the sum of the maps $\left\langle\phi_{i} \mid i \in I\right\rangle$ and $\beta(\phi)$ the Čech-Stone lifting of ϕ. The ultracoproduct of maps $\left\langle\phi_{i} \mid i \in I\right\rangle$ (denoted by $\sum_{\mathcal{U}} \phi_{i}$) is the restriction of $\beta(\phi)$ to the ultracoproduct $\sum_{\mathcal{U}} X_{i}$.

2.4 Elementary sublattices

Elementarity turned out to be a useful tool in the theory of compact Hausdorff spaces. If X is a compact Hausdorff space and 2^{X} the lattice of all its closed subsets, the Wallman's representation of any elemetary sublattice of L of 2^{X} is also compact Hausdorff, because being normal, distributive and disjunctive are expressible by a first-order formula.

Existence of elementary sublattices of any infinite cardinality up to the cardinality of the original lattice is given by the Löwenheim-Skolem theorem. We often want to convert a non-metric compact space X to a metric one. That can be achieved by taking elementary sublattices of 2^{X} of countable cardinality:

Theorem 2.4.1. Let L be a normal distributive disjunctive lattice of countable cardinality. Then $w L$ is compact, Hausdorff and metrizable.

Proof. From Wallman's representation theorem we know that $w L$ is compact Hausdorff, hence normal, and that L is isomorphic to a base for closed set in $w L$. By Urysohn's metrization theorem $w L$ is metrizable.

We are interested in what properties of compact Hausdorff spaces are inherited by the Wallman's representations of all elementary sublattices of the lattice of all closed sets. We call such properties elementarily reflected.

Sometimes it is useful to know more about the structure of the elementary sublattice. We can accomplish that by using models for almost all of set theory to get elementary sublattices. Recall that for a cardinal $\theta, H(\theta)$ denotes the set of all sets whose transitive closure has cardinality less then θ. These sets are very important and useful because if θ is uncountable regular then

$$
H(\theta) \models \text { ZFC - P (see Chapter IV in [18]). }
$$

When proving a property of some object, the arguments use only a limited number of sets. So there is θ large enough to guarantee that $H(\theta)$ contains all sets needed (for example, see Levy Reflection Theorem, Chapter IV in [18]). In the main chapter we choose a cardinal θ large enough so that $H(\theta)$ contains all sets necessary to investigate the properties we deal with.

Löwenheim-Skolem theorem now provides elementary submodels of $H(\theta)$. If we take an elementary submodel \mathcal{M} of $H(\theta)$ that contains 2^{X} as its element, then $\mathcal{M} \cap 2^{X}$ is an elementary sublattice of 2^{X} that contains all elements of 2^{X} expressible by a formula in the language of set theory with coefficients in \mathcal{M} and we can see more of its behaviour from outside within the frame of the model \mathcal{M}. Thus the Wallman's representation of $\mathcal{M} \cap 2^{X}$ shares more properties with the compactum X. The properties that are inherited from X by the Wallman's representation of $\mathcal{M} \cap 2^{X}$ for any $2^{X} \in \mathcal{M} \prec H(\theta)$ are called elementarily reflected by submodels.

An important class of properties that are elementarily reflected are those that do not depend on the choice of the lattice base. This leads to the notion of a base-free formula that is due to Bankston (for instance [5]). A lattice formula ϕ is called base-free if for any compact space X and any lattice base \mathcal{B} for closed sets of X

$$
\mathcal{B} \models \phi \text { if and only if } 2^{X} \models \phi .
$$

For example connectedness, (hereditarily) indecomposability and having covering dimension less or equal to $n \in \omega$ are properties that can be expressed by a base-free formula ([5]).

As we are particulary interested in continua, we give two proofs that being connected is elementarily reflected. First showing that connectedness is expressible by a base-free formula and then deriving some properties of $w(e)$, the Wallman's representation of the elementary embedding e of an elementary sublattice L of 2^{X} into 2^{X}.

Let $\operatorname{conn}(z)$ denote the following formula

$$
\operatorname{conn}(z)=\forall x y(x \sqcup y=z \wedge x \sqcap y=\mathbf{0} \rightarrow x \sqcap z=\mathbf{0} \vee y \sqcap z=\mathbf{0})
$$

So for compact space X and $a \in 2^{X}, \operatorname{conn}[a]$ is true if and only if a is a connected subset of X.

To prove that conn $[\mathbf{1}]$ is base-free, we will need the following lemma.
Lemma 2.4.2. Let X be a compact Hausdorff space and \mathcal{B} a lattice base for X. If $F \subset O$, where F is a closed and O an open subset of X then there is a $B \in \mathcal{B}$ such that $F \subset B \subset O$.

Theorem 2.4.3. The lattice sentence conn[1] expressing the connectedness is base-free.

Proof. Let X be a compact Hausdorff space and \mathcal{B} a lattice base for X. Obviously

$$
2^{X} \models \operatorname{conn}[\mathbf{1}] \text { implies } \mathcal{B} \models \operatorname{conn}[\mathbf{1}] .
$$

For the converse, suppose that $\mathcal{B} \models \operatorname{conn}[\mathbf{1}]$. If X is not connected, then Lemma 2.4.2 provides F and G from \mathcal{B} witnessing disconectivity of X. It means that

$$
\mathcal{B} \models \exists F G(F \neq \mathbf{0} \wedge G \neq \mathbf{0} \wedge F \sqcup G=\mathbf{1} \wedge F \sqcap G=\mathbf{0})
$$

which contradicts \mathcal{B} modelling conn [1].
Let L be an elementary sublattice of 2^{X} and let $e: L \rightarrow 2^{X}$ denote the elementary embedding. Applying the functor w, we get the continuous mapping $w(e): X \rightarrow w L$ sending a point x to the ultrafilter $\{A \in L \mid x \in A\}$. As e is one-to-one, $w(e)$ is obviously onto. Combining that with X being compact and $w L$ Hausdorff, $w(e)$ is closed. Lemma 2.8 in [4] shows that $w(e)$
is even weakly confluent (a map between two continua A and B is weakly confluent if for every subcontinuum C of B there is a subcontinuum of A that maps onto C). Hence many properties of compact spaces are elementarily reflected.

Theorem 2.4.4. Being connected is a property of compact spaces that is elementarily reflected.

3 Chainability, span and their reflection

In this chapter, we introduce two important properties for continua, chainability and span. In [19], Lelek showed that every chainable continuum has span zero and later he conjectured the converse. We give the proof of his result for arbitrary continua ([30]) and show that his conjecture can be generalized to non-metric spaces. Namely, we show that if there is a non-metric counterexample to Lelek's conjecture, then, using elementarity, we find a metric one.

3.1 Chainability

Definition 3.1.1 (Chain). Let X be a continuum. A chain is a nonempty, finite collection $\mathcal{C}=\left\{C_{1}, \ldots, C_{n}\right\}$ of open subsets C_{i} of X such that $C_{i} \cap C_{j} \neq$ \emptyset if and only if $|i-j| \leq 1$. The elements C_{i} of \mathcal{C} are called links of the chain \mathcal{C}.

Definition 3.1.2 (Chainability). A continuum X is chainable if every open cover has an open cover refinement which is a chain.

Remark 3.1.3. The definition above agrees with the definition of chainable for metric continua which states that a metric continuum X is chainable if for every $\varepsilon>0$ there is a chain covering X such that all of its elements have the diameter less than ε. Chainable metric continua are sometimes called arc-like, as these two properties are known to be equivalent (see for instance [24]).

We prove that chainability can be rephrased in terms of a lattice base only. For that, we need a well-known theorem on shrinkings. A shrinking of a cover $\left\{O_{i}\right\}_{i \in I}$ of a space X is a cover $\left\{U_{i}\right\}_{i \in I}$ of the space X such that $U_{i} \subset O_{i}$ for every i.

Theorem 3.1.4. ([12]) Every finite open covering $\left\{V_{i}\right\}_{i=1}^{k}$ of a normal space X has shrinkings $\left\{F_{i}\right\}_{i=1}^{k}$ and $\left\{W_{i}\right\}_{i=1}^{k}$ of functionally closed and functionally open sets respectively such that $F_{i} \subset W_{i} \subset \bar{W}_{i} \subset V_{i}$ for all $i=1, \ldots, k$.

Theorem 3.1.5. Let \mathcal{B} be an open base for a continuum X closed under finite unions and finite intersections. Then X is chainable if and only if every open cover consisting of sets from \mathcal{B} has a chain refinement in \mathcal{B}.

Proof. Take $\mathcal{V}=\left\{V_{i}\right\}_{i=1}^{k} \subset \mathcal{B}$ an open cover of X. If X is chainable, then there is an open chain refinement $\mathcal{C}=\left\{C_{i}\right\}_{i=1}^{n}$ of \mathcal{V}. By 3.1.4 there is a shrinking $\left\{D_{i}\right\}_{i=1}^{n}$ of \mathcal{C} consisting of functionally open sets such that $\overline{D_{i}} \subset C_{i}$ for all i. By connectedness the family $\left\{D_{i}\right\}_{i=1}^{n}$ is still a chain. By compactness (and closure under finite unions) there are B_{i} in \mathcal{B} such that $\overline{D_{i}} \subset B_{i} \subset \overline{B_{i}} \subset$ C_{i} for every $i \leq n$.

To prove that chainability is elementarily reflected, it would be handy if it was expressible in the lattice language. There we are only partially successful, since the following formula expressing chainability uses a disjunction over natural numbers, which leads to need of the logic $\mathcal{L}_{\omega_{1} \omega}$.

Let $\phi_{m}\left(u_{1}, \ldots, u_{m}\right)$ be the following formula in the lattice language in the $\operatorname{logic} \mathcal{L}_{\omega_{1} \omega}$.

$$
\begin{equation*}
u_{1} \sqcap \ldots \sqcap u_{m}=\mathbf{0} \rightarrow \bigvee_{n} \exists v_{1} \ldots v_{n} \theta\left(u_{1}, \ldots, u_{m} ; v_{1}, \ldots, v_{n}\right) \tag{3.1}
\end{equation*}
$$

where $\theta\left(u_{1}, \ldots, u_{m} ; v_{1}, \ldots, v_{n}\right)$ is the conjunction of the following formulas
(i) $v_{1} \sqcap \ldots \sqcap v_{n}=\mathbf{0}$
(ii) $\bigwedge_{i} \bigvee_{j} v_{i} \geq u_{j}$
(iii) $\bigwedge_{i=1}^{n-1} v_{i} \sqcup v_{i+1} \neq \mathbf{1} \wedge \bigwedge_{i=1}^{n-2} \bigwedge_{j=i+2}^{n} v_{i} \sqcup v_{j}=\mathbf{1}$.

Translated into open covers, for a finite open cover $\left\{w L \backslash u_{i} \mid i<m\right\}$ there is a finite open cover $\left\{w L \backslash v_{i} \mid i<n\right\}$ (by item (i)) refining $\left\{w L \backslash u_{i} \mid i<m\right\}$ (by item (ii)). Finally, the formula (iii) expresses that $\left\{w L \backslash v_{i} \mid i<n\right\}$ forms a chain. Applying Lemma 3.1.5, we get the following

Lemma 3.1.6. Let L be a normal distributive disjunctive lattice. Its Wallman's representation $w L$ is chainable if and only if

$$
L \models \forall u_{1} \ldots u_{m} \phi_{m}\left(u_{1}, \ldots, u_{m}\right) \text { for all } m<\omega .
$$

Remark 3.1.7. As the unit interval $[0,1]$ is chainable but its ultracopower over ω is not chainable (see [14]), chainability is not a first-order property in the language of lattices.

However, in the language of the set theory, $\{\in\}$, the formula 3.1 becomes a first-order formula

$$
u_{1} \sqcap \ldots \sqcap u_{m}=\mathbf{0} \rightarrow(\exists n \in \omega)\left(\exists v \in L^{n}\right) \theta\left(u_{1}, \ldots, u_{m} ; v\right) .
$$

We rely on that in the proofs of the reflection of chainability and nonchainability by submodels (if \mathcal{M} is an elementary submodel of $H(\theta)$, then $\omega \in \mathcal{M})$.

3.2 Span

In [19], Lelek introduced the notion of span for metric spaces. Let (X, d) be a metric space. We shall denote by π_{1} and π_{2} the projections of the square $X \times X$ onto its axes. The span σX of the space X is defined to be the supremum of numbers ε for which there is a connected subset Z of $X \times X$ such that
(i) $\pi_{1}[Z]=\pi_{2}[Z]$
(ii) $d(x, y) \geq \varepsilon$ for $(x, y) \in Z$

If we drop the metric from the definition, we can only distinguish between span zero and non-zero. As span turned out to be particularly useful in the continuum theory, we give the following definition.

Definition 3.2.1 (Span). A continuum X has span zero if every subcontinuum Z of $X \times X$, which projects onto the same set on both coordinates, has a nonempty intersection with the diagonal $\Delta_{X}=\{(x, x) \mid x \in X\}$ of X. Otherwise we say that X has span non-zero.

In [21], Lelek defined variations of span, so called surjective span and surjective semispan, by changing the conditinions on the projections of the subcontinuum Z of $X \times X$ in the definition of span to $\pi_{1}[Z]=\pi_{2}[Z]=X$ and $\pi_{1}[Z] \subset \pi_{2}[Z]=X$ respectively.

Relaxing the metric from the definition, we obtain the following definition.

Definition 3.2.2. A continuum X has the surjective (semi)span zero if every subcontinuum Z of $X \times X$, which projects onto X in both coordinates (at least in one coordinate), has a nonempty intersection with the diagonal Δ_{X} of X. Otherwise we say that X has surjective (semi)span non-zero.

Lelek showed that span and surjective span need not be equal ([21]) and neither span and semispan do ([22]). However, Davis ([8]) proved that having span zero and having semispan zero are equivalent for metric continua. For his proof he defined a new kind of span, the symmetric span.

We call a subset A of the square $X \times X$ symmetric if $A=A^{-1}$, where $A^{-1}=\{(x, y) \mid(y, x) \in A\}$.

Definition 3.2.3 (Symmetric span). Let X be a continuum. X has the symmetric span zero if for every symmetric subcontinuum Z of the square $X \times X$ the intersection of Z with the diagonal Δ_{X} of X is non-empty. Otherwise X has the symmetric span non-zero.

Theorem 3.2.4. Every chainable continuum has span zero.
Proof. Let X be a chainable continuum with non-zero span. Let Z be a subcontinuum of $X \times X$ that misses the diagonal Δ_{X}. There exists an open set $U \subset X \times X$ such that $\Delta_{X} \subset U$ and $U \cap Z=\emptyset$. So for every $x \in X$ we can choose an open subset U_{x} of X such that $U_{x} \times U_{x} \cap Z=\emptyset$. As X is chainable, the open cover $\left\{U_{x} \mid x \in X\right\}$ has a finite chain refinement $\left\{V_{1}, \ldots, V_{n}\right\}$. Define two open subsets U_{1} and U_{2} of $X \times X$ as follows:

$$
\begin{aligned}
& U_{1}=\bigcup_{i, j<n, i<j} V_{i} \times V_{j} \\
& U_{2}=\bigcup_{i, j<n, i>j} V_{i} \times V_{j}
\end{aligned}
$$

Then $U_{1} \cup U_{2} \supset Z$ and $U_{1} \cap U_{2} \cap Z=\emptyset$. If not, Z would intersect $V_{i} \times V_{i}$ for some i, which contradicts V_{i} being a subset of some U_{x}. Thus Z is the union of two disjoint nonempty open (in Z) sets $U_{1} \cap Z$ and $U_{2} \cap Z$. By connectedness of Z, one of these sets must be empty, say $U_{2} \cap Z$. So $\pi_{2}[Z] \subset \pi_{2}\left[U_{1}\right] \neq X$, which means that surjective span is zero. As chainability is hereditary, it implies that span is zero as well. Since $Z \subset U_{1}$ and Z misses all $V_{i} \times V_{i}, Z$ cannot be symmetric and hence also symmetric span must be zero.

3.3 Reflection

Let θ be a cardinal large enough so that $H(\theta)$ contains all sets needed in the reasonings below (see the section on Elementary sublattices).

For a continuum X, let 2^{X} (resp. $2^{X \times X}$) denote the lattice of all closed subset of X (resp. $X \times X$). Let \mathcal{M} be an elementary submodel of $H(\theta)$ that contains 2^{X} as one of its elements. As the following sets are expressible by a set-theoretical formula with coefficients in \mathcal{M}, they are elements of \mathcal{M}.
$X, X \times X, 2^{X \times X}, \pi_{i}: X \times X \rightarrow X$, the diagonal Δ_{X} of X, \emptyset, all natural numbers, the set of all natural numbers ω.

Hence $L=\mathcal{M} \cap 2^{X}$ and $K=\mathcal{M} \cap 2^{X \times X}$ are elementary sublattices of 2^{X} and $2^{X \times X}$ respectively.

In this section we present the proofs of the reflection of chainability, nonchainability and span non-zero by submodels from the dissertation [30]. We prove that also having span zero is elementarily reflected by submodels. Thus we have a substantially larger class of spaces to look for a counterexample to Lelek's conjecture. Indeed, if there exists a non-metric continuum X that has span zero but is not chainable, then taking \mathcal{M} to be countable, the Wallman representation of $L=\mathcal{M} \cap 2^{X}$ will be a metric continuum with span zero, that is not chainable.

Theorem 3.3.1. $w K$ and $w L \times w L$ are homeomorphic.
Proof. Define the map $\iota: w K \rightarrow w L \times w L$, by

$$
\iota(p)=\left(\left\{\pi_{1}[A] \mid A \in p\right\},\left\{\pi_{2}[A] \mid A \in p\right\}\right) .
$$

Claim 1. $\iota(p) \in w L \times w L$ for all $p \in w K$.
Proof. By elementarity, $\pi_{1}[A] \in L$, whenever $A \in K$, and $B \times X \in K$, whenever $B \in L$. Since p has the finite intersection property, so does $\left\{\pi_{1}[A] \mid A \in\right.$ $p\}$. Take any $U \in L$ such that $U \cap \pi_{1}[A] \neq \emptyset$ for all $A \in p$. Then $\pi_{1}^{-1}[U]=$ $U \times X$ intersects all elements of p and lies in K. Since p is maximal, $U \times X$ must be an element of p, so $\left\{\pi_{1}[A] \mid A \in p\right\}$ is an ultrafilter on L and hence a point of $w L$. Analogously, $\left\{\pi_{2}[A] \mid A \in p\right\} \in w L$. We proved that $\operatorname{Im}(\iota) \subset w L \times w L$.

Claim 2. ८ is surjective.

Proof. Let $(q, r) \in w L \times w L$. Thanks to elementarity, the set $\mathcal{S}=\{A \times$ $X, X \times B \mid A \in q, B \in r\}$ is a subset of K. Since q and r have the finite intersection property and $(A \times X) \cap(X \times B)=A \times B \in K, \mathcal{S}$ has the finite intersection property as well. Thus there exists a point $p \in w K$ extending \mathcal{S}. Previous claim showed $\left\{\pi_{1}[A] \mid A \in p\right\} \in w L$. But also, $\left\{\pi_{1}[A] \mid A \in p\right\} \supset q$. By maximality of $q,\left\{\pi_{1}[A] \mid A \in p\right\}=q$. Similarly, $\left\{\pi_{2}[A] \mid A \in p\right\}=r$. Thus $\iota(p)=(q, r)$ and $\operatorname{Im}(\iota)=w L \times w L$.

Claim 3. ८ is injective.
Proof. Suppose that there are $p \neq s \in w K$ with $\iota(p)=\iota(s)$. As $p \neq s$, there are $A \in p$ and $B \in s$ such that $A \cap B=\emptyset$. By elementarity, there are open disjoint subsets U and V containing A and B respectively with disjoint closures in \mathcal{M}. For every point in A there is a pair of open subsets of X such that their product contains the point and its closure is contained in the closure of U. As A is compact, we can find finitely many of these pairs such that their products cover A. Since $\omega \in \mathcal{M}$, by elementarity we can find a finite number of pairs of elements of L the products of which cover A and a finite number of elements of L whose products cover B, with their unions disjoint. Since K contains all the products of pairs of elements from L and p and s are maximal filters, p and s contain a product of elements of L with empty intersection, which contradicts $\iota(p)=\iota(s)$.

Claim 4. ι is continuous.
Proof. $\{A \times B \mid A, B \in L\}$ is a closed base for $w L \times w L . \iota^{-1}[A \times B]=$ $A \times X \cap X \times B$. Since $(A \times X) \cap(X \times B) \in K$, it corresponds to a closed subset of $w K$. Thus ι is continuous.

We showed that ι is a continuous one-to-one onto map. $w K$ being compact and $w L \times w L$ Hausdorff implies that ι is a homeomorphism.

Corollary 3.3.2. Let $e: L \rightarrow 2^{X}$ and $f: K \rightarrow 2^{X \times X}$ be the elementary embeddings. Then $\iota \circ w(f)=w(e) \times w(e)$.

Proof. For every $(x, y) \in X \times X$

$$
\iota \circ w(f)(x, y)=\left(\left\{\pi_{1}[A] \mid(x, y) \in A, A \in K\right\},\left\{\pi_{2}[A] \mid(x, y) \in A, A \in K\right\}\right)
$$

and

$$
w(e) \times w(e)(x, y)=(\{B \in L \mid x \in B\},\{C \in L \mid y \in C\})
$$

Whenever $x \in B \in L$ and $y \in C \in L$, we have $(x, y) \in A \times B \in K$. So $\{B \in L \mid x \in B\} \subset\left\{\pi_{1}[A] \mid(x, y) \in A, A \in K\right\}$ and $\{C \in L \mid y \in$ $C\} \subset\left\{\pi_{2}[A] \mid(x, y) \in A, A \in K\right\}$. From the above we know that all these sets are ultrafilters, so we can replace ' \subset ' by ' $=$ '. Hence $\iota \circ w(f)(x, y)=$ $w(e) \times w(e)(x, y)$ for all $(x, y) \in X \times X$.

It means that whenever a subset of $w L \times w L$ misses the diagonal of $w L$, its preimage under $\iota \circ w(f)$ misses the diagonal of X.

Theorem 3.3.3. Chainability is a property of continua that is elementarily reflected by submodels.

Proof. Suppose that X is chainable. We will show that the continuum $w L$ is chainable as well. In 3.1.5 we proved that it is enough to consider open covers of $w L$ consisting of the elements from the base $\mathcal{B}=\{w L \backslash F \mid F \in L\}$ only. So let $\mathcal{V}=\left\{v_{1}, \ldots, v_{m}\right\} \subset \mathcal{B}$ be an open cover of $w L$.

Since 2^{X} models the formula 3.1, there exists $n \in \omega$ and $w_{1}, \ldots, w_{n} \in 2^{X}$ such that $\theta\left[v_{1}, \ldots, v_{k} ; w_{1}, \ldots, w_{n}\right]$, where θ is defined in 3.1. By elementarity, there are $\left\{x_{1}, \ldots, x_{n}\right\} \in L$ such that $\theta\left[v_{1}, \ldots, v_{m} ; x_{1}, \ldots, x_{n}\right]$. Then $\{w L \backslash$ $\left.x_{i} \mid i=1, \ldots, n\right\}$ is an open chain cover of $w L$ refining \mathcal{V}.

Theorem 3.3.4. Being non-chainable is a property of continua that is elementarily reflected by submodels.

Proof. X being non-chainable means that there is an open cover $\left\{U_{1}, \ldots, U_{m}\right\}$ every open cover refinement of which does not form a chain. Since $\omega \in \mathcal{M}$, elementarity provides $n \in \omega$ and $\left\{u_{0}, \ldots, u_{n-1}\right\} \in \mathcal{M}$ such that

$$
\mathcal{M} \models\left\{u_{0}, \ldots, u_{n-1}\right\} \subset 2^{X} \wedge \bigcap_{i<n} u_{i}=\emptyset
$$

and $\left\{X \backslash u_{0}, \ldots, X \backslash u_{n-1}\right\}$ is an open cover of X that does not have a chain refinement. In the language of closed sets, for every $m \in \omega \subset \mathcal{M}$ and every $\left\{v_{0}, \ldots, v_{m-1}\right\} \subset 2^{X} \cap \mathcal{M}$, if

$$
\begin{equation*}
\mathcal{M} \models \bigcap_{i<m} v_{i}=\emptyset \wedge \bigwedge_{i<m} \bigvee_{j<n} u_{j} \subset v_{i} \tag{3.2}
\end{equation*}
$$

then also

$$
\begin{equation*}
\mathcal{M} \models \bigvee\left\{v_{i} \cup v_{j} \neq X| | i-j \mid \geq 2\right\} \vee \bigvee\left\{v_{i} \cap v_{i+1}=X \mid i<m-1\right\} \tag{3.3}
\end{equation*}
$$

Suppose that $w L$ is chainable. Since $\left\{u_{1}, \ldots, u_{n}\right\} \subset L=2^{X} \cap \mathcal{M}$, by Lemma 3.1.5 there is $m \in \omega$ and a subset $\left\{v_{i} \mid i<m\right\}$ of L such that their complements form a chain cover refinement of the cover $\left\{w L \backslash u_{i} \mid i<n\right\}$. It means that \mathcal{M} models 3.2 but also \mathcal{M} models the negation of 3.3, which is a contradiction.

In order to prove reflection of span non-zero and span zero, we introduce three unary functions p_{1}, p_{1}, i^{\prime} on $2^{X \times X}$.

The projections π_{1}, π_{2} induce semi-lattice homomorphisms

$$
\begin{array}{rl}
\pi_{1}^{\prime}: 2^{X \times X} \rightarrow 2^{X} & A \mapsto \pi_{1}[A] \\
\pi_{2}^{\prime}: 2^{X \times X} \rightarrow 2^{X} & A \mapsto \pi_{2}[A]
\end{array}
$$

having as right inverses lattice monomorphisms

$$
\begin{array}{ll}
e_{1}: 2^{X} \rightarrow 2^{X \times X} & A \mapsto A \times X \\
e_{2}: 2^{X} \rightarrow 2^{X \times X} & A \mapsto X \times A
\end{array}
$$

respectively. We make π_{i}^{\prime} 's into mappings from $2^{X \times X}$ to $2^{X \times X}$ by composing them with e_{i} 's

$$
\begin{aligned}
p_{1} & :=e_{1} \circ \pi_{1}^{\prime}: 2^{X \times X} \rightarrow 2^{X \times X}
\end{aligned} \quad A \mapsto \pi_{1}[A] \times X,
$$

Since e_{i} is a monomorphisms and π_{i}^{\prime} is onto, $\operatorname{Im}\left(p_{i}\right)$ is lattice-isomorphic to 2^{X}.

To deal with symmetric span, we define a mapping

$$
i: X \times X \rightarrow X \times X \quad(x, y) \mapsto(y, x)
$$

which induces the lattice isomorphism

$$
i^{\prime}: 2^{X \times X} \rightarrow 2^{X \times X} \quad A \mapsto A^{-1} .
$$

By elementarity, $\pi_{1}^{\prime}, \pi_{2}^{\prime}, e_{1}, e_{2}, p_{1}, p_{2}$ and i^{\prime} are elements of \mathcal{M}. Let us denote the restriction of π_{i}^{\prime} to K by $\pi_{i}^{\prime K}$ and the restriction of e_{i} to L by e_{i}^{L}.

Theorem 3.3.5. Having span non-zero is a property of continua that is elementarily reflected by submodels.

Proof. If X has span non-zero then there is a subcontinuum $Z \subset X \times X$ that projects onto both coordinates onto the same set and that misses the diagonal Δ_{X}. It implies that for every closed subset $F \in 2^{X}$ we have

$$
Z \leq e_{1}[F] \text { if and only if } Z \leq e_{2}[F] .
$$

Consider a family \mathcal{G} of all closed subsets G of X such that $Z \leq e_{1}[G] \sqcup e_{2}[G]$. As $Z \sqcap \Delta_{X}=\mathbf{0}, \Pi_{\mathcal{G}} G=\mathbf{0}$. By compactness there is a finite subfamily $\mathcal{G}^{\prime} \subset \mathcal{G}$ having zero meet. By elementarity there is such a Z in \mathcal{M}; as Δ_{X} also belongs to \mathcal{M} we get such a continuum in $w L \times w L$.

Hereinafter, we regard $2^{X \times X}$ as a lattice algebra with three additional unary functions p_{1}, p_{2}, i^{\prime}, so as a model for the language $\mathcal{L}=\left\{\sqcup, \sqcap, \mathbf{0}, \mathbf{1}, p_{1}, p_{2}, i^{\prime}\right\}$, and K as an \mathcal{L}-substructure of $2^{X \times X}$. Let us denote the interpretation of a function symbol f in K by f^{K}.

Thanks to elementarity, $\operatorname{Im}\left(p_{1}^{K}\right)$ and $\operatorname{Im}\left(p_{2}^{K}\right)$ are lattice-isomorphic to L. From the definition of the ultraproduct, $\operatorname{Im}\left(\prod_{\mathcal{U}} p_{i}\right)$ is lattice-isomorphic to $\prod_{\mathcal{U}} 2^{X}$ and $\operatorname{Im}\left(\prod_{\mathcal{U}} p_{i}^{K}\right)$ is lattice-isomorphic to $\prod_{\mathcal{U}} L$.

Theorem 3.3.6. Having (surjective) (semi)span zero and symmetric span zero are properties of continua that are elemetarily reflected by submodels.

Proof. Let X be a continuum and L and K as above. Denote $e: K \rightarrow 2^{X \times X}$ the elementary embedding. After adding the elements of K to the language \mathcal{L} as constants, the models K and $2^{X \times X}$ remain elementarily equivalent. By Shelah's theorem (2.3.9), there are a cardinal κ, an ultrafilter \mathcal{U} on κ and an isomorphism $h: \prod_{\mathcal{U}} K \rightarrow \prod_{\mathcal{U}} 2^{X \times X}$ such that $\Delta \circ e=h \circ \Delta$, where Δ stands for the diagonal embedding of a structure into its ultrapower.

Applying the functor w, we obtain a homeomorpism $w(h): \sum_{\mathcal{U}} X \times X \rightarrow$ $\sum_{\mathcal{U}} w L \times w L=w\left(\prod_{\mathcal{U}} K\right)$ such that $\nabla \circ w(h)=w(e) \circ \nabla$, where $\nabla=w(\Delta)$ is the corresponding codiagonal map.

Let $Z \subset w L \times w L$ witness (surjective)(semi)span (symmetric span) nonzero. Define $Z_{X}=\nabla \circ w(h)^{-1}\left[\sum_{\mathcal{U}} Z\right]$. We show that Z_{X} is a subcontinuum of $X \times X$ that maps onto Z (so it does not meet the diagonal) and that has the same "projection properties" as Z, so X has the same kind of span non-zero as $w L$.

By 2.3.19, $\sum_{\mathcal{U}} Z$ is a subcontinuum of $\sum_{\mathcal{U}} w K$ and consequently Z_{X} is a subcontinuum of $X \times X$.

We first show that $\nabla\left[\sum_{\mathcal{U}} Z\right]=Z$ using the description of ∇ from Lemma 2.3.17. On one hand, $\beta(p)\left[\sum_{\mathcal{U}} Z\right] \subset \beta(p)[\beta(Z \times I)]=\overline{p[Z \times I]}=Z$ (for a subset S of a space Y, \bar{S} denotes the closure of S in Y). On the other hand, $Z=p[Z \times I] \subset \beta(p)\left[\sum_{\mathcal{U}} Z\right]:$ in $\beta(X \times I)$ the closure of $\{z\} \times I$ intersects $\sum_{\mathcal{U}} Z$ and the points in the intersection get mapped to z.

From $\nabla\left[\sum_{\mathcal{U}} Z\right]=w(e) \circ \nabla \circ w(h)^{-1}\left[\sum_{\mathcal{U}} Z\right]$ it follows that $w(e)\left[Z_{X}\right]=Z$, which means that Z_{X} misses the diagonal of X.

In the rest of the proof, we deduce that Z_{X} inherits the "projection properties" (being symmetric) from Z.

Since h is an isomorphism, we have that $h \circ \prod_{\mathcal{U}} p_{1}^{K}=\prod_{\mathcal{U}} p_{1} \circ h$ and similarly for p_{2} and i^{\prime}. As π_{i}^{\prime} and $\pi_{i}^{\prime K}$ are surjective and e_{i} and e_{i}^{L} are injective it implies that $h \circ \prod_{\mathcal{U}} e_{i}^{L}=\prod_{\mathcal{U}} e_{i} \circ h^{L}$, where h^{L} denotes h restricted to the isomorphic copy of $\prod_{\mathcal{U}} L$ in $\prod_{\mathcal{U}} K$.

The maps e_{1}^{L} and e_{2}^{L} induce the first and the second projections $\pi_{1}^{w K}, \pi_{2}^{w K}$: $w K=w L \times w L \rightarrow w L$ respectively via the Wallman representation. Similarly $\prod_{\mathcal{U}} e_{i}^{L}$ induces $\sum_{\mathcal{U}} \pi_{i}^{w K}: \sum_{\mathcal{U}} w L \times w L \rightarrow \sum_{\mathcal{U}} w L$ and $\prod_{\mathcal{U}} e_{i}$ induces $\sum_{\mathcal{U}} \pi_{i}: \sum_{\mathcal{U}} X \times X \rightarrow \sum_{\mathcal{U}} X$.

As $h \circ \prod_{\mathcal{U}} e_{i}^{L}=\prod_{\mathcal{U}} e_{i} \circ h^{L}$, also $w\left(h^{L}\right) \circ \sum_{\mathcal{U}} \pi_{i}=\sum_{\mathcal{U}} \pi_{i}^{w K} \circ w(h)$.
Since $\nabla\left[\sum_{\mathcal{U}} Z\right]=Z, \pi_{i}\left[\sum_{\mathcal{U}} Z\right]=\sum_{\mathcal{U}} \pi_{i}[Z]$ and $\nabla \circ \sum_{\mathcal{U}} \pi_{i}^{w K}=\pi_{i}^{w K} \circ \nabla$,

$$
\begin{aligned}
& \pi_{1}^{K}[Z] \subset \pi_{2}^{K}[Z] \text { if and only if } \sum_{\mathcal{U}} \pi_{1}^{K}\left[\sum_{\mathcal{U}} Z\right] \subset \sum_{\mathcal{U}} \pi_{2}^{K}\left[\sum_{\mathcal{U}} Z\right] \\
& \pi_{1}^{K}[Z]=\pi_{2}^{K}[Z] \text { if and only if } \sum_{\mathcal{U}} \pi_{1}^{K}\left[\sum_{\mathcal{U}} Z\right]=\sum_{\mathcal{U}} \pi_{2}^{K}\left[\sum_{\mathcal{U}} Z\right] \\
& \pi_{1}^{K}[Z]=w L \text { if and only if } \sum_{\mathcal{U}} \pi_{1}^{K}\left[\sum_{\mathcal{U}} Z\right]=\sum_{\mathcal{U}} w L
\end{aligned}
$$

As $\sum_{\mathcal{U}} \pi_{i}=w\left(h_{L}\right)^{-1} \circ \sum_{\mathcal{U}} \pi_{i}^{w K} \circ w(h), w(h)^{-1}\left[\sum_{\mathcal{U}} Z\right]$ has the same relation between the projections on the axes as $\sum_{\mathcal{U}} Z$ and consequently Z_{X} as well.

The isomorphism $i^{\prime K}$ obviously induces $i^{K}:=\iota \sim w\left(i^{\prime K}\right) \circ \iota^{-1}: w L \times w L \rightarrow$ $w L \times w L$ that switches the coordinates. Since $\prod_{\mathcal{U}} i^{\prime K} \circ h=h \circ \prod_{\mathcal{U}} i^{\prime}$, it holds that $\sum_{\mathcal{U}} i^{K}[A]=A$ if and only if $\left.\sum_{\mathcal{U}} i[w(h)[A]]\right)=w(h)[A]$ for $A \subset \sum_{\mathcal{U}} w L \times$ $w L$. It is easy to see that $i^{K}[Z]=Z$ if and only if $\sum_{\mathcal{U}} i^{K}\left[\sum_{\mathcal{U}} Z\right]=\sum_{\mathcal{U}} Z$, so $i^{K}[Z]=Z$ if and only if $i\left[Z_{X}\right]=Z_{X}$.

We proved that whenever Z witnesses (surjective)(semi)span (symmetric span) non-zero, then Z_{X} witnesses the same kind of span non-zero in X.

4 Questions

We proved that span zero is reflected by submodels using Shelah's theorem, which is a very deep and complicated result. Thus we ask

Question 2. Is there an easier (more direct) proof of the reflection of span zero?

In metric case, the confluent onto mappings between continua with their square confluent preserve span zero (see [10]). Hence a natural question arises

Question 3. Let $f: X \rightarrow Y$ be a confluent mapping from a continuum X onto a continuum Y, let span of X be zero and $f \times f$ confluent. Does Y have span zero?

Bankston ([4]) proved that the Wallman representation of an elementary embedding is weakly confluent. It is natural to ask whether it is confluent. Although the answer is negative in general (there are codiagonal maps that are not confluent [1]), the following question is still of major interest.

Question 4. If L is an elementary sublattice of 2^{X}, is the Wallman representation of the elementary embedding of L into 2^{X} confluent?

Bankston used in the proof of weak confluence Shelah's theorem.
Question 5. Is there a proof of (weak) confluence without the use of Shelah's theorem?

We would be successful if the following question had the affirmative answer,

Question 6. Let L be an elementary sublattice of 2^{X}. Can we prove that L contains a dense subset of the hyperspace of all subcontinua of wL without invoking Shelah's theorem?
because

Theorem 4.0.7. Let e : $L \rightarrow 2^{X}$ be the elementary embedding of a countable lattice L to 2^{X}. Then L contains a dense subset of the hyperspace of all subcontinua of $w L$ if and only if $w(e)$ is weakly confluent.

By the hyperspace \mathcal{C} of a continuum Y we mean the space whose points are all subcontinua of Y and the topology is generated by all sets of the form

$$
\left\langle U_{1}, \ldots, U_{n}\right\rangle=\left\{C \mid C \subset \bigcup_{i=1}^{n} U_{i} \text { and } C \cap U_{i} \neq \emptyset \text { for every } i=1, \ldots, n\right\}
$$

with U_{i} open in Y, for $i=1, \ldots, n$. It is easy to verify that the open sets $\left\langle U_{1}, \ldots, U_{n}\right\rangle$ with U_{i} taken only from some open base for Y generate the same topology on \mathcal{C}. For a comprehensive overview on hyperspaces see [25].

Proof. (\Rightarrow) Let \mathcal{C} denote the hyperspace of $w L$ and \mathcal{D} the hyperspace of X. As X is compact, \mathcal{D} is compact as well. $w L$ being in addition metric implies that \mathcal{C} is compact metric (see for instance [12]). Take an arbitrary subcontinuum K of $w L$ and consider a sequence $\left\langle K_{i}\right\rangle_{i \in \omega}$ of elements from L converging to K in \mathcal{C}. $\left\langle K_{i}\right\rangle_{i \in \omega}$ with K_{i} taken as subsets of X is then a sequence of subcontinua, so it has at least one cluster point, say C. Then C maps onto K so $w(e)$ is weakly confluent.
(\Leftarrow) Let $e: L \rightarrow 2^{X}$ be the elementary embedding and $w(e)$ its Wallman representation.

We will show that for every subcontinuum A of $w L$ and every open basic neighbourhood $A \in\left\langle U_{1}, \ldots, U_{n}\right\rangle$ such that for every i the complement H_{i} of U_{i} in $w L$ is an element of L, there is a subcontinuum $E \in L \cap$ $\left\langle U_{1}, \ldots, U_{n}\right\rangle$.
Pick an $F \in L$ with $A \subset \operatorname{int}(F)$ and $F \subset U_{1} \cup \ldots \cup U_{n}$. Then $w(e)^{-1}[A] \subset F^{X}$, where F^{X} denotes the representation of F as a subset of X. If $w(e)$ is weakly confluent, then there is a component C of $w(e)^{-1}[A]$ such that C maps onto A. So $C \subset F^{X} \subset \bigcup_{i \in I} U_{i}^{X}$ and $C \cap U_{i}^{X} \neq \emptyset$ for $i=1 \ldots, n$. Hence 2^{X} models

$$
\begin{equation*}
\exists G\left(\operatorname{conn}(G) \wedge G \sqcap \prod_{i \in I} H_{i}=\emptyset\right) \wedge \bigwedge_{j \in I} G \sqcap\left(\prod_{i \in I} H_{i} \sqcup H_{j}\right) \neq \emptyset . \tag{4.1}
\end{equation*}
$$

In translation it means that there is a subcontinuum G of X that is an element of the open set $\left\langle U_{1}^{X}, \ldots, U_{n}^{X}\right\rangle$. By elementarity, there
exists a subcontinuum E in L that fits into the open neighbourhood $\left\langle U_{1}, \ldots, U_{n}\right\rangle$, which finishes the proof.

The Question 1 remains open. However, it can now be generalized.
Question 7. Is there a (non)-metric continuum that has span zero and is not chainable?

Bibliography

[1] Paul Bankston. Not every co-existential map is confluent. Houston Journal of Mathematics. to appear.
[2] Paul Bankston. Expressive power in first order topology. J. Symbolic Logic, 49(2):478-487, 1984.
[3] Paul Bankston. Reduced coproducts of compact Hausdorff spaces. J. Symbolic Logic, 52(2):404-424, 1987.
[4] Paul Bankston. Taxonomies of model-theoretically defined topological properties. J. Symbolic Logic, 55(2):589-603, 1990.
[5] Paul Bankston. The Chang-łoś-Suszko theorem in a topological setting. Arch. Math. Logic, 45(1):97-112, 2006.
[6] C. C. Chang and H. J. Keisler. Model theory, volume 73 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, third edition, 1990.
[7] Maria Cuervo and Edwin Duda. A characterization of span zero. Houston J. Math., 12(2):177-182, 1986.
[8] James Francis Davis. The equivalence of zero span and zero semispan. Proc. Amer. Math. Soc., 90(1):133-138, 1984.
[9] Edwin Duda. A characterization of semispan of continua. Proc. Amer. Math. Soc., 96(1):171-174, 1986.
[10] Edwin Duda. Confluent maps and spans. Houston J. Math., 27(4):845849, 2001.
[11] Edwin Duda and James Kell, III. Two sum theorems for semispan. Houston J. Math., 8(3):317-321, 1982.
[12] R. Engelking. Outline of general topology. Translated from the Polish by K. Sieklucki. North-Holland Publishing Co., Amsterdam, 1968.
[13] R. Gurevič. On ultracoproducts of compact Hausdorff spaces. J. Symbolic Logic, 53(1):294-300, 1988.
[14] K. P. Hart and B. J. van der Steeg. Span, chainability and the continua \mathbb{H}^{*} and \mathbb{I}_{u}. Topology Appl., 151(1-3):226-237, 2005.
[15] Wilfrid Hodges. Model theory, volume 42 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1993.
[16] W. T. Ingram. An atriodic tree-like continuum with positive span. Fund. Math., 77(2):99-107, 1972.
[17] H. Jerome Keisler. Ultraproducts and elementary classes. Nederl. Akad. Wetensch. Proc. Ser. A $64=$ Indag. Math., 23:477-495, 1961.
[18] Kenneth Kunen. Set theory, volume 102 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 1980. An introduction to independence proofs.
[19] A. Lelek. Disjoint mappings and the span of spaces. Fund. Math., 55:199-214, 1964.
[20] A. Lelek. Some problems concerning curves. Colloq. Math., 23:93-98, 176, 1971.
[21] A. Lelek. An example of a simple triod with surjective span smaller than span. Pacific J. Math., 64(1):207-215, 1976.
[22] A. Lelek. On the surjective span and semispan of connected metric spaces. Colloq. Math., 37(1):35-45, 1977.
[23] A. Lelek. The span of mappings and spaces. In The Proceedings of the 1979 Topology Conference (Ohio Univ., Athens, Ohio, 1979), volume 4, pages 631-633 (1980), 1979.
[24] Sam B. Nadler, Jr. Continuum theory, volume 158 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker Inc., New York, 1992. An introduction.
[25] Sam B. Nadler, Jr. Hyperspaces of sets. A text with research questions, volume 33 of Aportaciones Matemáticas: Textos [Mathematical Contributions: Texts]. Sociedad Matemática Mexicana, México, 2006. Unabridged edition of the 1978 original.
[26] Lex G. Oversteegen. On products of confluent and weakly confluent mappings related to span. Houston J. Math., 12(1):109-116, 1986.
[27] Lex G. Oversteegen and E. D. Tymchatyn. Plane strips and the span of continua. I. Houston J. Math., 8(1):129-142, 1982.
[28] Lex G. Oversteegen and E. D. Tymchatyn. On span and weakly chainable continua. Fund. Math., 122(2):159-174, 1984.
[29] Saharon Shelah. Every two elementarily equivalent models have isomorphic ultrapowers. Israel J. Math., 10:224-233, 1971.
[30] Berd van der Steeg. Models in Topology. Dissertation. Tech. Univ. Delft, Amsterdam, 2003.
[31] Henry Wallman. Lattices and topological spaces. Ann. of Math. (2), 39(1):112-126, 1938.

Index

Čech-Stone compactification, 15
arc-like, 20
base-free formula, 17
chain, 20
chainable, 20
codiagonal map, 16
confluent mapping, 5, 31
connected space, 7
continuum, 7
arc-like, 20
chainable, 20
diagonal embedding, 13
elementarily reflected, 16
by submodels, 17
elementary substructure, 12
filter
on a lattice, 9
on a set, 12
prime, 9
proper, 9
hyperspace, 31
Löwenheim-Skolem Theorem, 12
lattice, 7
algebra, 7
base, 8
disjunctive, 8
distributive, 8
normal, 8
of closed sets, 8
link, 20
Shelah's Theorem, 14
shrinking, 20
span, 22
surjective, 23
surjective semispan, 23
symmetric, 23
ultracoproduct
of maps, 16
of spaces, 14
ultrafilter
on a lattice, 9
on a set, 12
ultrapower
of structures, 13
of topological spaces, 14
ultraproduct
categorial, 14
of structures, 13
of topological spaces, 14
Wallman's representation theorem, 9
Wallman-Čech compactification, 10
weakly confluent map, 19

