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CSP DICHOTOMY FOR SPECIAL POLYADS

JAKUB BULÍN

Abstract. For a digraph G, the Constraint Satisfaction Problem with
template G, or CSP(G), is the problem of deciding whether a given input
digraph H admits a homomorphism to G. The CSP dichotomy conjec-
ture of Feder and Vardi states that for any digraph G, CSP(G) is either
in P or NP-complete. Barto, Kozik, Maróti and Niven [3] confirmed the
conjecture for a class of oriented trees called special triads. We gener-
alize this result, establishing the dichotomy for a class of oriented trees
which we call special polyads.

1. Introduction

Let G be a fixed finite digraph. The Constraint Satisfaction Problem with
template G, or CSP(G) for short, is the following decision problem:

INPUT: A finite digraph H.
QUESTION: Is there a homomorphism from H to G?

In graph theory, CSP(G) is also called G-coloring problem. This class of
problems has recently recieved a lot of attention, mainly because of the work
of Feder and Vardi [7] from 1999. In this article the authors conjectured a
large natural class of NP decision problems avoiding the complexity classes
between P and NP-complete (assuming that P 6=NP). Many natural decision
problems, such as k-SAT, graph k-colorability or solving systems of linear
equations over finite fields belong to this class. In the same article they
proved that each such problem can be expressed as CSP(G) for some digraph
G. Therefore their dichotomy conjecture can be formulated as follows:

The CSP dichotomy conjecture. For every digraph G, CSP(G) is either
tractable or NP-complete.

We say for brevity that G is tractable (NP-complete) if CSP(G) is tractable
(NP-complete).

The dichotomy was established for a number of special cases, including
oriented paths (which are all tractable) [8], oriented cycles [6], undirected
graphs [9] and many others. The work of Jeavons, Cohen and Gyssens [10],
refined by Bulatov, Jeavons and Krokhin [4], has shown a strong connection
between the constraint satisfaction problem and universal algebra. This ”al-
gebraic approach” led to a rapid development of the subject and is essential
to our paper. For more information on the algebraic approach to CSP, see
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the survey of Krokhin, Bulatov and Jeavons [11]. Using the algebraic ap-
proach (in particular, a result of Maróti and McKenzie [13]), Barto, Kozik
and Niven [2] established the CSP dichotomy for digraphs without sources or
sinks (i.e., digraphs such that each vertex has an incoming and an outgoing
edge).

In the class of all digraphs, oriented trees are in some sense very ”far”
from digraphs without sources or sinks. Except the oriented paths, the
simplest class of oriented trees are the triads (i.e., oriented trees with one
vertex of degree 3 and all other vertices of degree 1 or 2). Though the
dichotomy conjecture for triads remains open, it was confirmed by Barto,
Kozik, Maróti and Niven [3] for the so-called special triads, a certain class
of triads possessing enough structure to provide a structural description of
the tractable and NP-complete cases. Our paper generalizes their result to
the special polyads (which will be defined later). A polyad is an oriented
tree with one vertex of degree n > 0 and all other vertices of degree 1 or 2.
Special polyads are a straightforward generalization of special triads.

A digraph G is said to have bounded width if CSP(G) can be solved by
a certain polynomial-time algorithm called Local Consistency Checking (see
[7]). It was proved earlier that if G has a compatible majority operation [7]
or compatible totally symmetric idempotent operations of all arities [5], then
it has bounded width (and thus CSP(G) is tractable). In [12], Larose and
Zádori conjectured a full characterization of digraphs with bounded width.
This conjecture was recently confirmed by Barto and Kozik [1]. Our paper
relies on their result that digraphs with compatible weak near-unanimity
operations of almost all arities have bounded width (see Theorem 3.4 below).

In [3], the authors proved that every special triad is either NP-complete
or it has a compatible majority operation or compatible totally symmetric
idempotent operations of all arities. We concentrated on the special polyads
for several reasons. Though the special polyads do possess the same kind of
structure as the special triads, allowing us to apply some of the techniques
used in [3], it was not obvious whether the results from [3] can be extended
to them.

We were also interested in the following question: Will every tractable spe-
cial polyad be tractable for a ”simple” reason, by which we mean satisfying
some strong conditions ensuring tractability (e.g., possessing a compatible
majority operation, near-unanimity operation or totally symmetric idem-
potent operations of all arities)? We were not able to find such a strong
condition for every tractable special polyad, therefore we need the result
from [1] in its full strength. Moreover, we wanted to determine whether
there exist tractable special polyads without bounded width. The answer to
this question is negative. We believe that the techniques developed in this
article can be applied to a far broader class of oriented trees.

2. Preliminaries

A digraph G is a set of vertices V (G) together with a set of edges E(G) ⊆

V (G)2. For a, b ∈ V (G) such that 〈a, b〉 ∈ E(G), we write a
G
→ b. A

homomorphism f : H → G is a mapping from V (H) to V (G) which preserve

edges, i.e., for a, b ∈ V (H) with a
H
→ b we have that f(a)

G
→ f(b). An
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endomorphism is a homomorphism from G to G. A digraph H is called a
subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G).

A digraph is a core if every its endomorphism is surjective. For a digraph
G, the core of G is the smallest subgraph G′ of G such that there exists an
endomorphism f : G → G′ (it is determined uniquely up to isomorphism).
It is easily seen that a digraph H maps homomorphically to G if and only if
there exists a homomorphism H → G′. In particular, CSP(G) has the same
complexity as CSP(G′).

By an oriented tree we mean a digraph obtained from an undirected tree
(i.e., an undirected graph without cycles) by orienting its edges. Let G be
an oriented tree. To each a ∈ V (G) we can uniquely assign a nonnegative
integer level(a) (called the level of a) such that the following holds:

(i) If a
G
→ b, then level(b) = level(a) + 1.

(ii) There exists a vertex with level 0.

The height of G, denoted by hgt(G), is the highest level of a vertex of G.
An oriented path of length n is a digraph with vertices v0, v1, . . . , vn and

edges e0, e1, . . . , en−1 such that ei is either 〈vi, vi+1〉 or 〈vi+1, vi〉. By a
distance of two vertices a, b in a digraph G we mean the minimal length of
a directed path P such that P is a subgraph of G and a, b ∈ V (P).

Let P be an oriented path. We define the net length of P to be the number

net(P) = |#{i : vi
P
→ vi+1} − #{i : vi+1

P
→ vi}|.

Note that the height of P is precisely net(P). P is called minimal if it has
precisely one vertex of level 0 (the initial vertex) and it is one of the vertices
v0, vn and precisely one vertex of level net(P) (the terminal vertex) which is
the other one of v0, vn. Below is an example of a minimal path:
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Figure 1. A minimal path of net length 4

3. CSP and Compatible weak-NUs

In this section we introduce the weak near-unanimity operations and their
connection to the complexity of CSP(G). Recall that by an r-ary operation
on a set A we wean a mapping Ar → A, f is said to be idempotent if it
satisfies f(a, a, . . . , a) = a for all a ∈ A.
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Definition 3.1. Let r ≥ 3. An r-ary operation ω on A is called a weak
near-unanimity operation (or a weak-NU ) if it is idempotent and satisfies

ω(a, . . . , a, b) = ω(a, . . . , a, b, a) = · · · = ω(b, a, . . . , a)

for all a, b ∈ A. We also define the binary operation ◦ω by setting

a ◦ω b = ω(a, . . . , a, b).

We will be interested in weak near-unanimity operations compatible with
a given digraph:

Definition 3.2. Let G be a digraph and let ω be an r-ary operation on
V (G). We say that ω is compatible with G (or is a compatible operation of

G) if it satisfies the following condition: if ai, bi ∈ V (G) and ai
G
→ bi for

i = 1, . . . , r, then ω(a1, . . . , ar)
G
→ ω(b1, . . . , br).

It can be easily seen that an operation obtained by composing operations
compatible with G is also compatible with G. In particular if ω is a weak-NU
operation compatible with G, then ◦ω is also compatible with G, as we can
obtain it by composing ω with the projection operations (i.e. the operations
pi

r(x1, . . . , xr) = xi, which are indeed compatible with G).

In the rest of this section we introduce two theorems connecting the com-
putational complexity of CSP(G) with existence of weak near-unanimity
operations compatible with G. We will later use these algebraic tools to
prove tractability or NP-completeness of the ”special polyads” defined in
the next section. The following theorem is a combination of a result of Bu-
latov, Jeavons and Krokhin from [4] and a result of Maróti and McKenzie
[13].

Theorem 3.3. Let G be a digraph. If the core of G admits no compatible
weak-NU operation, then CSP(G) is NP-complete.

The next theorem is a recent result of Barto and Kozik [1].

Theorem 3.4. Let G be a digraph. If the core of G admits compatible
weak-NU operations of almost all arities (i.e., there exists k0 such that for
all k ≥ k0 the core of G admits a compatible k-ary weak-NU), then G has
bounded width.

4. Special polyads, Main theorem

In this section we define the special polyads, a certain class of oriented
trees generalizing the special triads treated in [3], as well as their cores. An
n-ad is an oriented tree which has precisely one vertex of degree n and all
other vertices of degree 1 or 2.

Definition 4.1. Let n and k be nonnegative integers, n ≥ 1 and 0 ≤ k ≤ n.
Let P1, P2, . . . , Pn, P′

1, P′
2, . . . , P′

n be minimal oriented paths of the same
net length. For each i ∈ {1, 2, . . . , n}, let the initial and terminal vertices of

P′
i be i and î, respectively.
A special n-ad given by the paths P1, P2, . . . , Pn, P′

1, P′
2, . . . , P′

n is the

oriented tree obtained by identifying the terminal vertices of Pi with î for
i = 1, 2, . . . , n and identifying the initial vertices of P1, P2, . . . , Pn to a single
vertex 0 (see the figure below, arrows indicate ”direction” of paths).
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Figure 2. A special n-ad

The core of a special n-ad may not be a special n′-ad for any n′ ≤ n. In
order to be able to use Theorem 3.3, we introduce the following notion:

Definition 4.2. Let n ≥ 1 and 0 ≤ k ≤ n. By a special n-ad with k half-
branches given by the paths P1, P2, . . . , Pn, P′

1, P′
2, . . . , P′

n−k we mean the
oriented tree obtained from a special n-ad given by P1, P2, . . . , Pn, P′

1, P′
2,

. . . , P′
n (for arbitrary P′

n−k+1, P′
n−k+2, . . . , P′

n) by removing all the vertices

of P′
n−k+i except of î for each i = 1, . . . , k.

We denote the set of vertices from V (G) of level 0 by Low and the set
of vertices of maximal level by Upp, i. e. Low = {0, 1, 2, . . . , n − k} and

Upp = {1̂, 2̂, . . . , n̂}. We put Half = { ̂n − k + 1, ̂n − k + 2, . . . , n̂}. Let us
also define Paths(G) to be the set {P1, P2, . . . , Pn, P′

1, P
′
2, . . . , P

′
n−k}.

By a special polyad we will mean a special n-ad with k half-branches with
n and k arbitrary.

Below is an example of a special polyad, namely special 5-ad with 2 half-
branches:
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Figure 3. A special 5-ad with 2 half-branches

Note that in our terminology, a special triad from [3] is a special 3-ad
with 0 half-branches. Now we can state the following observation:

Lemma 4.3. Let G be a special polyad. Then the core of G is also a special
polyad.

Proof. It is easily seen that a homomorphism from a minimal path of net
length l to an oriented tree of height l maps the initial vertex to a vertex
of level 0 and the terminal vertex to a vertex of level l. The rest follows
directly from this fact. �
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The following theorem is the main result of this paper:

Theorem 4.4. For every special polyad G, either CSP(G) is NP-complete
or G has bounded width (and thus is tractable).

We will prove Theorem 4.4 in section 6.

5. Comp(G) and nice weak-NUs

Let G be a special polyad. We are interested in weak-NU operations
compatible with G. In this section we translate the question if G has a
compatible r-ary weak-NU into a question whether there exists a weak-NU
compatible with a certain family of digraphs on the set Low∪Upp which we
denote by Comp(G). This construction will significantly simplify the proof
of Theorem 4.4.

Definition 5.1. Let I ⊆ Paths(G) and S ∈ Paths(G). By a compatible
mapping of I to S we mean a mapping f : ΠP∈IV (P) → V (G) satisfying the
following conditions:

(i) If cP, dP ∈ V (P), cP

P
→ dP for each P ∈ I and all the vertices cP have

the same level, then f(〈cP : P ∈ I〉)
G
→ f(〈dP : P ∈ I〉).

(ii) Let aP and bP be the initial and terminal vertices of P ∈ I, re-
spectively. Then f(〈aP : P ∈ I〉) is the initial vertex of S and
f(〈bP : P ∈ I〉) is its terminal vertex.

We say that I maps compatibly to S (via f) if there exist a compatible
mapping f of I to S.

Remark. Note that I maps compatibly to S if and only if there exists a
homomorphism from the component of connectivity of the digraph ΠP∈IP

containing the tuple of initial vertices 〈aP : P ∈ I〉 to S. Indeed, if f is
such a homomorphism, then we can extended it to ΠP∈IV (P) by setting
f(c1, . . . , c|I|) = c1 whenever 〈c1, . . . , c|I|〉 is not in the above mentioned
component. The property (i) is obvious and it is not hard to prove that (ii)
holds as well (see Lemma 2.1 from [3]).

Definition 5.2. For each subset I ⊆ Paths(G) we define a digraph GI

as follows: Let V (GI) = Low ∪ Upp and for a, b ∈ V (GI), a
GI→ b iff a ∈

Low, b ∈ Upp, a and b are connected in G via S ∈ Paths(G) and I maps
compatibly to S.

We define Comp(G) = {GI : I ⊆ Paths(G)} We say that an operation on
the set Low ∪ Upp is compatible with Comp(G) (or that it is a compatible
operation of Comp(G)) if it is compatible with all GI ∈ Comp(G).

In the next lemma we state several properties of Comp(G) which will be
needed later:

Lemma 5.3.

(i) Let f be an r-ary operation compatible with G. Then for any I =

{S1, S2, . . . , Sr} ⊆ Paths(G) we have f(a1, . . . , ar)
GI→ f(b1, . . . , br),

where ai and bi are the initial and terminal vertices of Si, respec-
tively.
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(ii) For any I ⊆ Paths(G) and S ∈ I we have a
GI→ b, where a and b are

the initial and terminal vertex of S, respectively.
(iii) If I ⊆ J ⊆ Paths(G), then GI is a subgraph of GJ .

Proof. Statement (i) is an easy consequence of the compatibility of f with
G and (ii) follows by an application of (i) to a projection operation, which
is indeed compatible with G.

To prove (iii), choose a, b with a
GI→ b and let S be the path connecting

a to b in G. Let f be a compatible mapping of I to S. If we denote
I = {S1, S2, . . . , Sr}, then for each i, 1 ≤ i ≤ r we have that Si ∈ J , and
thus by (ii) there exists a compatible mapping fi of J to Si. Now the
mapping g(x1, x2, . . . , xr) = f(f1(x1), f2(x2), . . . , fr(xr)) is easily seen to be

a compatible mapping of J to G, proving that a
GJ
→ b. �

We will prove that a special polyad G has an r-ary compatible weak-NU
if and only if Comp(G) does. Let us first introduce some useful notation:

Definition 5.4. For any tuple ā = 〈a1, . . . , ar〉 ∈ V (G)r and 0 ≤ l ≤ hgt(G)
we define Levell(ā) to be the number

Levell(ā) = |{i : ai has level l}|.

Notice that Level0(ā) = |{i : ai ∈ Low}| and Levelhgt(G)(ā) = |{i : ai ∈
Upp}|.

Theorem 5.5. Let G be a special polyad. G has a compatible r-ary weak-NU
iff there exists an r-ary weak-NU compatible with Comp(G).

Proof. First, let ω be an r-ary weak-NU compatible with G. We define an
r-ary operation ω′ on the set Low ∪ Upp as follows: Let ā = 〈a1, . . . , ar〉 ∈
(Low ∪ Upp)r.

(1) If Levell(ā) = r for some l ∈ {0, hgt(G)}, we put ω′(ā) = ω(ā).
(2) If Levell(ā) = r − 1 for some l ∈ {0, hgt(G)}, we put ω′(ā) = ai,

where ai ∈ Upp if l = 0 and ai ∈ Low if l = hgt(G).
(3) In all other cases we put ω′(ā) = a1.

Claim. ω′ is a weak-NU operation.

Let a, b ∈ Low∪Upp be arbitrary. We want to prove that ω′(a, . . . , a, b) =
ω′(a, . . . , a, b, a) = · · · = ω′(b, a, . . . , a). Clearly, for all of these tuples the
same case applies, one of the cases (1), (2). In case (1) it holds because
ω is a weak-NU. In case (2) the definition is independent of the order of
a1, . . . , ar, so the desired property holds as well.

Claim. ω′ is compatible with Comp(G).

Let I ⊆ Paths(G) be arbitrary. Choose ā, b̄ ∈ (Low ∪ Upp)r such that

ai
GI→ bi for each i. It follows that for both ω′(ā) and ω′(b̄) case (1) of

the definition applies. Thus we only need to establish ω(ā)
GI→ ω(b̄), which

follows easily from Lemma 5.3 (i) and (iii).

To prove the other implication, assume that Comp(G) has a compatible
r-ary weak-NU ω′. For each I ⊆ Paths(G) and S ∈ Paths(G), if I maps
compatibly to S, then we choose a fixed compatible mapping fI,S of I to S.
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We will define an r-ary operation ω on V (G). Choose arbitrary ā ∈
V (G)r.

(1) If Levell(ā) = r for some l, 0 ≤ l ≤ hgt(G), then
(1.1) if l ∈ {0, hgt(G)}, we put ω(ā) = ω′(ā)
(1.2) else we define ω(ā) below.

(2) If there exist l 6= l′ such that Levell(ā) = 1 and Levell′(ā) = r − 1,
then we put ω(ā) = ai, where i is such that ai has level l.

(3) In all other cases we put ω(ā) = a1.

In case (1.2) we define ω(ā) as follows: For each i = 1, . . . , r, let Si ∈
Paths(G) be such that ai ∈ V (Si). Denote by ui and vi the initial and
terminal vertices of Si, respectively. Let a′i be the vertex from V (Si) ∩
{a1, . . . , ar} with minimal distance from ui.

For I = {S1, . . . , Sr} we have ui
GI→ vi for all i; thus ω′(ū)

GI→ ω′(v̄). Denote
by S the path connecting ω′(ū) to ω′(v̄) in G. Finally, we are ready to define

ω(ā) = fI,S(〈a
′
i : Si ∈ I〉).

and the definition of ω is completed.

Claim. ω is a weak-NU operation.

Choose arbitrary a, b ∈ V (G). Again, the same case of the definition
applies for ω(a, . . . , a, b), ω(a, . . . , a, b, a), . . . , ω(b, a, . . . , a), either (1) or (2).
Similarly as before, in case (1.1) the weak-NU property holds because ω′

is a weak-NU and in case (2) the definition is independent of the order of
a1, . . . , ar.

It remains to verify the weak-NU property for case (1.2). In this case,
the definition of ω′(ā) depends only on I, S and 〈a′i : Si ∈ I〉. Clearly, if we
switched ai with aj for some i, j, neither I nor 〈a′i : Si ∈ I〉 would change;
thus they are independent of the order of a1, . . . , ar. The path S depends
only on ω′(ū) and ω′(v̄). But since ω′ is a weak-NU, ū and v̄ do not depend
on which ā ∈ {〈a, . . . , a, b〉, 〈a, . . . , a, b, a〉, . . . , 〈b, a, . . . , a〉} we choose. Thus
we have proved that ω is a weak-NU.

Claim. ω is compatible with G.

Let ā, b̄ ∈ V (G)r be such that ai
G
→ bi for i = 1, . . . , r. It is easy to see

that if ω(ā) is defined by (2) or (3), then ω(b̄) is defined by the same case

and ω(ā)
G
→ ω(b̄). Let ω(ā) be defined by (1.1), implying that ω(ā) = ω′(ā).

Then ω(b̄) is defined by (1.2); and so ω(b̄) = fI,S(〈bi : Si ∈ I〉) for some I,
where S is a path with initial vertex ω(ā). But since ω(b̄) lies on the path

S and has level one, it follows that ω(ā)
G
→ ω(b̄). If ω(ā) is defined by (1.2)

and ω(b̄) by (1.1), the proof is analogous.
It remains to investigate the case when both ω(ā) and ω(b̄) are defined by

(1.2). We have that ω(ā) = fI,S(〈a
′
i : Si ∈ I〉) and ω(b̄) = fI,S(〈b

′
i : Si ∈ I〉),

where a′i
G
→ b′i for all i. It follows that ω(ā)

G
→ ω(b̄), since fI,S is a compatible

mapping. �

In the proof of Theorem 4.4 we will need weak-NU operations compatible
with Comp(G) having a certain property, which we call being nice. Luckily,
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as we prove in the next lemma, each weak-NU compatible with Comp(G)
can be easily modified to have this property.

Definition 5.6. Let ω be an r-ary weak-NU compatible with Comp(G).
We say that ω is nice if it satisfies the following: if {a1, . . . , ar} ⊆ Low \ {0}
and ω(â1, . . . , âr) = âi for some i, then ω(a1, . . . , ar) = ai.

Lemma 5.7. If Comp(G) has a compatible r-ary weak-NU, then it has a
compatible r-ary nice weak-NU.

Proof. Let ω be an r-ary weak-NU compatible with G. We define ω′ in the
following way:

(1) If {a1, . . . , ar} ⊆ Low \ {0} and ω(â1, . . . , âr) = âi for some i, then
ω′(a1, . . . , ar) = ai

(2) else we put ω′(ā) = ω(ā).

It is obvious that ω′ is a nice weak-NU. Choose GI ∈ Comp(G) and

ai ∈ Low, bi ∈ Upp such that ai
GI→ bi, i = 1, 2, . . . r. To verify that ω′ is

compatible with GI it suffices to consider the case when ω′(ā) is defined by
(1). But then for some i,

ω′(a1, . . . , ar) = ai
GI→ âi = ω(â1, . . . , âr) = ω′(â1, . . . , âr),

which concludes the proof. �

Corollary 5.8. Let G be a special polyad. G has a compatible r-ary weak-
NU iff Comp(G) has a compatible r-ary nice weak-NU.

Proof. Follows directly from Theorem 5.5 and Lemma 5.7. �

6. Proof of Theorem 4.4

Finally, we are ready to start proving the main result. Let G be a special
polyad. According to Lemma 4.3, we may assume that G is a core. If
G has no compatible weak-NU operation, then CSP(G) is NP-complete by
Theorem 3.3. In this section we prove that if G has a compatible r-ary
weak-NU, then it also has a compatible (r + 1)-ary weak-NU.

We will use the translation of the problem presented in the previous sec-
tion. Suppose that Comp(G) has a compatible r-ary nice weak-NU ω. Recall
that by ◦ω we mean the binary operation defined by

x ◦ω y = ω(x, . . . , x, y).

In the following two lemmata we present two different constructions of an
(r + 1)-ary compatible weak-NU from ω, imposing certain properties on ◦ω.
Consequently, in the Proof of Theorem 4.4 we will quite easily show that
each nice weak-NU compatible with Comp(G) has one of these properties.

Lemma 6.1. If Comp(G) has a compatible r-ary nice weak-NU ω satisfying

(∀a ∈ Low) 0 ◦ω a = 0

then it has a compatible (r + 1)-ary nice weak-NU.
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Proof. We will prove that Comp(G) has a compatible (r + 1)-ary weak-NU.
Then by Lemma 5.7 it also has a nice one. We put

Maj = {a ∈ Low : a ◦ω 0 = a}.

First, we need to prove the following observation:

Claim. If a ∈ Maj and b ∈ Low, then a ◦ω b = a.

The assumptions of this lemma state that the claim is true for a = 0. It
remains to prove the claim for a 6= 0. For b = 0 the claim follows from the

definition of Maj. Assume that b 6= 0. We will prove that â ◦ω b̂ = â. Since
ω is compatible with Comp(G), it is indeed compatible with the digraph

H = GPaths(G). In this digraph we have that a
H
→ â and 0

H
→ b̂; and so

a = a ◦ω 0
H
→ â ◦ω b̂. We conclude that â ◦ω b̂ = â. Since ω is nice, it follows

that a ◦ω b = a and the claim is proved.

In order to prove that Comp(G) has a compatible (r + 1)-ary weak-NU,
we will define an (r + 1)-ary operation τ on the set Low ∪ Upp. For ā =
〈a1, . . . , ar, ar+1〉 ∈ (Low ∪ Upp)r+1 we define τ(ā) as follows:

(1) If Levell(ā) = r for some l ∈ {0, hgt(G)}, then
(1.1) if ā = 〈a, . . . , a, b〉 for some a, b ∈ Low, a /∈ Maj, we put τ(ā) =

a ◦ω b and if ā = 〈â, . . . , â, b̂〉 for some â, b̂ ∈ Upp, a /∈ Maj, we

put τ(ā) = â ◦ω b̂
(1.2) else we define τ(ā) = ω(a1, . . . , ar).

(2) If Levell(ā) = r − 1 for some l ∈ {0, hgt(G)}, we put ω′(ā) = ai,
where ai ∈ Upp if l = 0 and ai ∈ Low if l = hgt(G).

(3) In all other cases we put ω′(ā) = a1.

Claim. τ is a weak-NU.

It is easily seen that the weak-NU property holds in the cases (2) and
(3) of the definition. As for the case (1), we will verify the property for

a, b ∈ Low. For â, b̂ ∈ Upp we can proceed analogously.
If a ∈ Maj, then case (1.2) applies. We get τ(a, . . . , a, b) = ω(a, . . . , a) =

a, while τ(a, . . . , a, b, a) = · · · = τ(b, a, . . . , a) = a ◦ω b = a; and so the
weak-NU property holds.

Now, suppose that a /∈ Maj. Then τ(a, . . . , a, b) = a ◦ω b by (1.1) and
τ(a, . . . , a, b, a) = · · · = τ(b, a, . . . , a) = a ◦ω b by (1.2). We conclude that τ
is indeed a weak-NU operation.

Claim. τ is compatible with Comp(G).

Choose arbitrary GI ∈ Comp(G) and ā, b̄ ∈ (Low ∪ Upp)r+1 such that

ai
GI→ bi, i = 1, 2, . . . r. If the same cases of the definition apply for τ(ā)

and τ(b̄), then the compatibility condition follows from compatibility of the
operations ◦ω in case (1.1), ω in (1.2) and the projection operations in cases
(2) and (3).

It can be easily seen that the only case when τ(ā) and τ(b̄) are defined
by different cases of the definition is when τ(ā) is defined by (1.2) and τ(b̄)

is defined by (1.1). In this situation we have that b̄ = 〈ĉ, . . . , ĉ, d̂〉 for some

ĉ, d̂ ∈ Upp, c /∈ Maj and τ(b̄) = ĉ ◦ω d̂. Since ai
GI→ ĉ for i = 1, . . . , r, we
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get τ(ā) = ω(a1, . . . , ar)
GI→ ω(ĉ, . . . , ĉ) = ĉ; and so ω(a1, . . . , ar) ∈ {0, c}.

We also know that 0 ∈ {a1, . . . , ar}, as otherwise case (1.1) would apply for
τ(ā).

First, let ω(a1, . . . , ar) = 0. Since 0
GI→ ĉ and ar+1

GI→ d̂, from the compat-
ibility of ◦ω we obtain

τ(ā) = ω(a1, . . . , ar) = 0 = 0 ◦ω ar+1
GI→ ĉ ◦ω d̂ = τ(b̄),

proving the compatibility condition for τ in this case.
Second, assume that ω(a1, . . . , ar) = c. Notice that c ∈ {a1, . . . , ar} (as

ω(0, . . . , 0) = 0), implying that c
GI→ ĉ. We will prove that ĉ ◦ω d̂ = ĉ. Then

it will follow that

τ(ā) = ω(a1, . . . , ar) = c
GI→ ĉ = ĉ ◦ω d̂ = τ(b̄),

which will conclude the proof.

In order to prove that ĉ ◦ω d̂ = ĉ, consider again the digraph H = GPaths(G).

Let j ∈ {1, . . . , r} be such that aj = 0. We have that aj
H
→ d̂ and ai

H
→ ĉ for

all i ∈ {1, . . . , r}. From the compatibility of ω with H it follows that

c = ω(a1, . . . , ar)
H
→ ω(ĉ, . . . , ĉ, d̂, ĉ, . . . , ĉ) = ĉ ◦ω d̂

implying that ĉ ◦ω d̂ = ĉ; and the proof is finished. �

In the next construction we define a partial order on the set Low∪Upp and
then use the binary operation ◦ω to ”compare the incomparable” elemets
(see the remark below).

Lemma 6.2. If Comp(G) has a compatible r-ary nice weak-NU ω satisfying

(∃z ∈ Low)(∀a ∈ Low, a 6= z) a ◦ω 0 = 0 ◦ω a = 0

then it has a compatible (r + 1)-ary nice weak-NU.

Proof. Again, it suffices to prove that Comp(G) has a compatible (r+1)-ary
weak-NU and then apply Lemma 5.7. We can assume that z 6= 0, since for
z = 0 we even have that a ◦ω 0 = 0 ◦ω a = 0 for all a ∈ Low, which allows
us to take any z′ ∈ Low instead of z.

We will define a partial order � on the set Low ∪ Upp. For all ĉ ∈ Upp,
ĉ 6= ẑ we put z ≺ ẑ ≺ 0 ≺ ĉ if ĉ ∈ Half and z ≺ ẑ ≺ 0 ≺ ĉ ≺ c else. We
define � to be the partial order generated by these relations.

Let us fix an arbitrary linear order < of the set Upp\{ẑ}. (We can assume

without loss of generality that z = 1 and Upp \ {ẑ} = {2̂ < 3̂ < · · · < n̂}.)
For each i = 1, 2, . . . , n− 1 we denote by ti the i-ary operation defined in

the following way:

t1(x) = x

t2(x1, x2) = x1 ◦ω x2

...

ti(x1, . . . , xi) = ti−1(x1, . . . , xi−1) ◦ω xi

Note that all these operations are compatible with Comp(G).
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Figure 4. The partial order �

For any ā ∈ (Low ∪ Upp)r+1 we define the set S(ā) to be the smallest
subset of Low ∪ Upp containing {a1, . . . , ar+1} and closed under all the
operations ti (i.e., ti(c1, . . . , ci) ∈ S(ā) for all i = 1, . . . , n−1 and c1, . . . , ci ∈
S(ā)).

For each ĉ ∈ Upp we define the set R(ĉ) in the following way: we put
R(ĉ) = {ĉ} if ĉ ∈ Half and R(ĉ) = {ĉ, c} else. Now, τ(ā) is defined as
follows:

(1) If S(ā) has the least element with respect to �, we define τ(ā) to be
that element

(2) else let {ĉ1 < ĉ2 < · · · < ĉm} be the set of all ĉ ∈ Upp \ {ẑ} such
that S(ā) ∩ R(ĉ) 6= ∅. Note that m ≥ 2. For i = 1, . . . , m we
denote by a′i the �-least element of S(ā) ∩ R(ĉi). Finally, we put
τ(ā) = tm(a′1, a

′
2, . . . , a

′
m).

It is easy to check the weak-NU property of τ , since τ(ā) is independent
of the order of a1, . . . , ar+1 (in both cases of the definition). It remains to
prove that τ is compatible with Comp(G).

Choose GI ∈ Comp(G) and ā, b̄ ∈ (Low ∪ Upp)r+1 such that ai
GI→ bi,

i = 1, 2, . . . r. First, let both τ(ā) and τ(b̄) be defined by case (1). Observe

that for each c ∈ S(ā) there exists d ∈ S(b̄) such that c
GI→ d and conversely,

for each d′ ∈ S(b̄) there exists c′ ∈ S(ā) with c′
GI→ d′. From this fact it

follows easily that if c and d are the �-least elements of S(ā) and S(b̄),

respectively, then c
GI→ d.

If τ(ā) and τ(b̄) are both defined by case (2), the compatibility can be
verified similarly: since 0 /∈ S(ā) (otherwise S(ā) would have a �-least
element), we get that for each c ∈ Low \ {0, z}, c ∈ S(ā) iff ĉ ∈ S(b̄), and

if it is the case, then c
GI→ ĉ. From this fact and the compatibility of the

operations ti, it follows directly that τ(ā)
GI→ τ(b̄).

It is easily seen that if τ(ā) is defined by case (2), then so is τ(b̄). Thus it
only remains to investigate the case when τ(ā) is defined by (1) and τ(b̄) by
(2). In this case, we have that τ(ā) = 0 and τ(b̄) = tm(ĉ1, . . . , ĉm) for some
2 ≤ m ≤ n − 1 and ĉi ∈ Upp \ {ẑ}.
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For each i, let c′i ∈ S(ā) be �-minimal such that c′i
GI→ ĉi. (Note that

c′i = 0 if ĉi ∈ Half and c′i ∈ {0, ci} else.) Since 0 ∈ S(ā), there exists j such
that c′j = 0. We will prove that tm(c′1, . . . , c

′
m) = 0. Then the proof will

conclude, as we will have that

τ(ā) = 0 = tm(c′1, . . . , c
′
m)

GI→ tm(ĉ1, . . . , ĉm) = τ(b̄).

In order to establish tm(c′1, . . . , c
′
m) = 0, we first need to prove that

tj(c
′
1, . . . , c

′
j−1, c

′
j) = tj−1(c

′
1, . . . , c

′
j−1) ◦ω 0 = 0. Since the �-least element

of S(ā) is 0, it follows that tj−1(c
′
1, . . . , c

′
j−1) 6= z. But then, by the assump-

tions of the lemma, tj−1(c
′
1, . . . , c

′
j−1) ◦ω 0 = 0. The rest is easy. We have

that
tj+1(c

′
1, . . . , c

′
j+1) = tj(c

′
1, . . . , c

′
j) ◦ω c′j+1 = 0 ◦ω c′j+1

and since c′j+1 6= z, it follows that tj+1(c
′
1, . . . , c

′
j+1) = 0. We can proceed

by induction, proving that tm(c′1, . . . , c
′
m) = 0. �

Remark. A totally symmetric operation is an operation f satisfying f(ā) =
f(ā′) whenever {a1, . . . , ar} = {a′1, . . . , a

′
r}. In fact, in the proof of Lemma

6.2 we constructed a totally symmetric idempotent operation. Moreover, we
didn’t need its arity to be r + 1. Thus we can use the same construction to
prove that if a special polyad has a compatible weak-NU ω satisfying

(∃z ∈ Low)(∀a ∈ Low, a 6= z) a ◦ω 0 = 0 ◦ω a = 0,

then it has compatible totally symmetric idempotent operations of all arities.
This property is also known to imply bounded width (see [5]). However, it
is not the case with the construction in Lemma 6.1. Therefore we need
Theorem 3.4 in its full strength.

Finally, we are ready to prove the main result.

Proof of Theorem 4.4.

Proof. Choose an arbitrary special polyad and let G be its core. By Lemma
4.3, G is also a special polyad. According to Theorem 3.3, if G has no
compatible weak-NU operation, then CSP(G) is NP-complete. Assume that
G has a compatible r0-ary weak-NU operation. We will prove that then
G has compatible weak-NUs of all arities r ≥ r0. It will then follow by
Theorem 3.4 that G has bounded width. We will proceed by induction on
r.

According to Corollary 5.8, it suffices to prove that if Comp(G) has a
compatible r-ary nice weak-NU, then it has a compatible (r + 1)-ary nice
weak-NU. Let ω be an r-ary nice weak-NU compatible with Comp(G). If ω
satisfies

(∀a ∈ Low) 0 ◦ω a = 0,

then by Lemma 6.1, Comp(G) has a compatible (r + 1)-ary nice weak-NU.
Suppose that there exists z ∈ Low such that 0 ◦ω z 6= 0. Consider the

digraph H = GPaths(G) ∈ Comp(G). We have 0
H
→ ẑ and z

H
→ ẑ. Since ω is

compatible with H, we obtain 0 ◦ω z
H
→ ẑ ◦ω ẑ = ẑ implying that 0 ◦ω z = z.

We will prove that a ◦ω 0 = 0 ◦ω a = 0 for all a ∈ Low, a 6= z. This
will finish the proof, since then according to Lemma 6.2, Comp(G) has a
compatible (r + 1)-ary nice weak-NU.
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The statement holds for a = 0. Striving for a contradiction, suppose
that there exists a ∈ Low \ {0, z} such that 0 ◦ω a = a or a ◦ω 0 = a.

As a
H
→ â, 0

H
→ â and 0

H
→ ẑ, we obtain in both cases that a

H
→ â ◦ω ẑ

(since 0 ◦ω a = ω(0, 0, . . . , 0, a)
H
→ ω(ẑ, â, â . . . , â) = â ◦ω ẑ). It follows that

â ◦ω ẑ = â. On the other hand, from 0 ◦ω z = z we can obtain in a similar
way that â ◦ω ẑ = ẑ. It is a contradiction, since we assumed that a 6= z. �
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