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1. Introduction

One of the basic facts about the congruence lattices of lattices is that they

are distributive and pseudocomplemented. T. Tanaka [11], P. Crawley [1], G.

Grätzer and E. T. Schmidt [3] have characterized those lattices whose congru-

ence lattices are Boolean. In the monograph [2], G. Grätzer posed problems

(problems III.5 and III.6) of characterizing those lattices whose congruence

lattices considered as pseudocomplemented lattices belong to the nth Lee’s

equational class Bn of distributive pseudocomplemented lattices described by

the identity

(Ln) (x1 ∧ . . . ∧ xn)∗ ∨ (x∗
1 ∧ . . . ∧ xn)∗ ∨ . . . ∨ (x1 ∧ . . . ∧ x∗

n)∗ = 1.

Distributive pseudocomplemented lattices satisfying the identity (Ln) are called

(Ln)-lattices [6], [7]. As the class B1 is the class of all Stone lattices, (L1)-

lattices are in fact Stone lattices. Lattices whose congruence lattices are Stone

have been characterized by T. Katriňák [8]. Later, M. Haviar [6] characterized

lattices with (Ln)-congruence lattices for arbitrary n ≥ 1.

Distributive pseudocomplemented lattices in which every interval satisfies

the identity (Ln) are called relative (Ln)-lattices. In [4], M. Haviar and T. Ka-

triňák characterized lattices with relative Stone congruence lattices. Lattices

with relative (Ln)-congruence lattices were characterized later by M. Haviar

in [6]. Semi-discrete lattices with (Ln)- and relative (Ln)-congruence lattices

were characterized by M. Haviar and T. Katriňák in [7].

The congruence lattices of lattices are also relatively pseudocomplemented,

hence they can be investigated as Heyting algebras. It is natural to seek

for a characterization of lattices whose congruence lattices satisfy identities

formulated in terms of relative pseudocomplement. In particular, relative (Ln)-

lattices can be characterized by the identity

(L′
n) (x1∧ . . .∧xn) ∗ y∨ (x1 ∗ y∧ . . .∧xn) ∗ y∨ . . .∨ (x1∧ . . .∧xn ∗ y) ∗ y = 1.

In [7] only semi-discrete lattices whose congruence lattices satisfy the identity

(L′
n) were described. In this work we present a description of arbitrary lattices

whose congruence lattices considered as Heyting algebras satisfy the identity

(L′
n) (section 4). In particular, one obtains a description of lattices with relative

(L1)-congruence lattices. In Section 3 we give a slightly different description

of lattices with relative Stone congruence lattices than is the one obtained in

Section 4 in case n = 1.

Our method is alternative to the one presented in [6] and [4] where the iden-

tity (L′
n) was not used and the respective descriptions of lattices with relative

(Ln)- and relative Stone congruence lattices were presented by translating the

corresponding conditions for factor lattices L/π (π is a congruence of L) with

(Ln)- and Stone congruence lattices without the need to write down the proofs
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for the given characterizations. In our approach presented here we entirely use

the identities (L′
n) and we actually write down self-contained proofs for the

characterizations of lattices with relative (Ln)- and relative Stone congruence

lattices.

2. Preliminaries

The following basic concepts and facts can be found in [2], [4], [7] or [6].

Let Con L denote the lattice of all congruences on a lattice L with ∆ and

∇, the smallest and the largest congruence relation. The lattice Con L is

distributive, moreover Con L satisfies the infinite distributivity law

θ ∧
∨

(αi : i ∈ I) =
∨

(θ ∧ αi : i ∈ I)

for any θ, αi ∈ Con L.

It follows that for any α, β ∈ Con L there exists a largest congruence δ such

that α ∧ δ ≤ β. It is obvious that δ =
∨

(σ : α ∧ σ ≤ β). The congruence δ

is called the relative pseudocomplement of α with respect to β and denoted by

α ∗ β. Therefore 〈Con L,∨,∧, ∗, ∆,∇〉 is a complete relatively pseudocomple-

mented lattice, i.e. a complete Heyting algebra.

Recall that an algebra 〈H,∨,∧, ∗, 0, 1〉 of type (2, 2, 2, 0, 0) is a Heyting

algebra if it satisfies:

(H1) 〈H,∨,∧〉 is a distributive lattice,

(H2) x ∧ 0 = 0, x ∨ 1 = 1,

(H3) x ∗ x = 1,

(H4) (x ∗ y) ∧ y = y, x ∧ (x ∗ y) = x ∧ y,

(H5) x ∗ (y ∧ z) = (x ∗ y) ∧ (x ∗ z), (x ∨ y) ∗ z = (x ∗ z) ∧ (y ∗ z).

The Heyting algebras were introduced by G. Birkhoff under the name Brouw-

erian algebras.

K. B. Lee [10] has shown that the lattice of all equational subclasses of the

class Bω of all distributive pseudocomplemented lattices (p-algebras) is a chain

B−1 ⊂ B0 ⊂ B1 ⊂ . . . ⊂ Bn ⊂ . . . ⊂ Bω

of type ω+1, where B−1, B0, B1 are the classes of all trivial p-algebras, Boolean

algebras, and Stone algebras, respectively. Moreover, a distributive pseudo-

complemented lattice belongs to the class Bn (n ≥ 1) if and only if it satisfies

the identity

(Ln) (x1 ∧ . . . ∧ xn)∗ ∨ (x∗
1 ∧ . . . ∧ xn)∗ ∨ . . . ∨ (x1 ∧ . . . ∧ x∗

n)∗ = 1,

i.e. is an (Ln)-lattice.

A distributive relatively pseudocomplemented lattice 〈L,∨,∧, ∗, 0, 1〉 is a

relative Stone lattice if and only if

x ∗ y ∨ (x ∗ y) ∗ y = 1
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for every x, y ∈ L. A distributive relatively pseudocomplemented lattice L is

a relative (Ln)-lattice (n ≥ 1) if and only if it satisfies the identity

(L′
n) (x1 ∧ . . .∧ xn) ∗ y ∨ (x1 ∗ y ∧ . . .∧ xn) ∗ y ∨ . . .∨ (x1 ∧ . . .∧ xn ∗ y) ∗ y = 1.

One of the mostly used concepts in this work is the concept of weak projec-

tivity of quotients. We denote a/b an ordered pair of elements a, b of a lattice

L satisfying b ≤ a; a/b is called a quotient of L. A quotient c/d is a subquotient

of a/b if b ≤ d ≤ c ≤ a. We call a/b a proper quotient if b < a. If b ≺ a, i.e. b

is covered by a, then a/b is called a prime quotient.

We will say that a quotient a/b is weakly projective to a quotient c/d and

use the notation a/b → c/d if there exist finitely many elements x1, . . . , xn ∈ L

such that

c = (. . . ((a ∨ x1) ∧ x2) ∨ . . .) ∨ xn,

d = (. . . ((b ∨ x1) ∧ x2) ∨ . . .) ∨ xn.

The importance of weak projectivity in the description of lattice congruences

is given by the following two lemmas.

Lemma 2.1. ([6], Lemma 1) For any principal congruence θa,b ∈ Con L,

(c, d) ∈ θa,b,

(d ≤ c, b ≤ a) if and only if there is a finite chain d = y0 ≤ . . . ≤ yn = c such

that a/b → yi+1/yi for all i ∈ {0, . . . , n− 1}.

Lemma 2.2. ([6], Lemma 2) Let L be a lattice and θ, ϕ ∈ Con L. then the

relative pseudocomplement of θ with respect to ϕ is

θ ∗ ϕ =
∨

(θu,v, (u, v) ∈ S),

where S is the set of all pairs of elements (u, v) (u, v ∈ L) such that u/v → z/t

and (z, t) ∈ θ implies (z, t) ∈ ϕ for all z, t ∈ L.

3. Lattices with relative Stone congruence lattices

In this section we give a description of lattices with relative Stone congruence

lattices.

Definition 3.1. ([4], Definition 1) Let L be a lattice, π ∈ Con L and a/b, u/v

quotients of L. Then L is said to be π-almost weakly modular whenever

a/b → u/v and (u, v) /∈ π imply the existence of a subquotient a1/b1 ⊆ a/b with

(a1, b1) /∈ π such that for every quotient r/s with a1/b1 → r/s and (r, s) /∈ π

there exists a quotient z/t with r/s → z/t , u/v → z/t and (z, t) /∈ π.

Definition 3.2. ([4], Definition 2) Let L be a lattice and θ, π ∈ Con L, θ ≥ π.

Then θ is said to be π-weakly separable if for any a < b in L there exists a

chain a = z0 ≤ z1 ≤ . . . ≤ zn = b such that for each i ∈ {0, . . . , n− 1} either
3



(i) zi+1/zi → u/v and (u, v) ∈ θ imply (u, v) ∈ π or

(ii) for every subquotient r/s ⊆ zi+1/zi with (r, s) /∈ π, there exists a quo-

tient u/v with r/s → u/v and (u, v) ∈ θ, (u, v) /∈ π.

Theorem 3.3. ([4], Theorem 2) Let L be a lattice. The lattice Con L is relative

Stone if and only if for every π ∈ Con L the following conditions hold:

(1) L is π-almost weakly modular and

(2) every congruence θ ≥ π is π-weakly separable.

Proof. First we will prove the necessity.

Let Con L be relatively Stone lattice, i. e. it satisfies the identity

(θ ∗ π) ∨ ((θ ∗ π) ∗ π) = ∇,

for all congruences θ, π ∈ Con L. Let a/b, u/v be quotients of L such that

a/b → u/v with (u, v) /∈ π and a > b, u > v. Set

φ := θu,v ∨ π.

Since Con L is relatively Stone, it follows that

(a, b) ∈ (φ ∗ π) ∨ ((φ ∗ π) ∗ π) = (θu,v ∗ π) ∨ ((θu,v ∗ π) ∗ π),

so there exists a chain b = c0 ≤ c1 ≤ . . . ≤ cn = a such that for every

i ∈ {0, . . . , n− 1}

(ci+1, ci) ∈ (θu,v ∗ π) or (ci+1, ci) ∈ ((θu,v ∗ π) ∗ π).

If for every i ∈ {0, . . . , n− 1} the first case holds, we get (a, b) ∈ θu,v ∗ π,

that is, (u, v) ∈ θu,v ∗ π, so (u, v) ∈ π, a contradiction.

Thus there is a subquotient a1/b1 ⊆ a/b such that (a1, b1) /∈ (θu,v ∗ π) and

(a1, b1) ∈ ((θu,v ∗ π) ∗ π). Let r/s be a quotient such that a1/b1 → r/s and

(r, s) /∈ π. Then (r, s) ∈ ((θu,v ∗ π) ∗ π).

Whenever the conditions r/s → z′/t′, (z′, t′) ∈ θu,v would imply (z′, t′) ∈ π

we would get (r, s) ∈ (θu,v ∗ π), so (r, s) ∈ π would also hold, a contradiction.

Hence there exists a quotient z′/t′ such that r/s → z′/t′, with (z′, t′) ∈ θu,v

and (z′, t′) /∈ π. Since (z′, t′) ∈ θu,v, there exists a subquotient z/t ⊆ z′/t′ such

that u/v → z/t. As also r/s → z/t, Con L is π-almost weakly modular.

Now let θ ∈ Con L with θ ≥ π. Since Con L is relative Stone lattice,

(a, b) ∈ (θ ∗ π) ∨ ((θ ∗ π) ∗ π) for any a > b. Therefore there exists a chain

b = z0 ≤ . . . ≤ zm = a such that

(zi+1, zi) ∈ (θ ∗ π) or (zi+1, zi) ∈ ((θ ∗ π) ∗ π).

In the first case we get that zi+1/zi → u/v and (u, v) ∈ θ implies (u, v) ∈ π. So

we get the condition (i) from the Definition 3.2. Now let (zi+1, zi) ∈ ((θ∗π)∗π).

Let r/s be a subquotient of the quotient zi+1/zi with (r, s) /∈ π and r/s → u/v,

(u, v) /∈ π. If for every u′ ≥ v′ the conditions u/v → u′/v′ and (u′, v′) ∈ θ
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imply (u′, v′) ∈ π, then (u, v) ∈ (θ ∗ π). So we would get (u, v) ∈ ((θ ∗ π) ∗ π)

and (u, v) ∈ (θ ∗ π), which yields (u, v) ∈ π, a contradiction.

So there exists a quotient u′/v′ such that u/v → u′/v′, (u′, v′) ∈ θ and

(u′, v′) /∈ π. The π-weakly separability of any congruence θ ∈ Con L has been

proved.

Now we will prove the sufficiency. Let a < b and let θ, π ∈ Con L, θ ≥ π.

From π-weakly separability of congruence θ follows the existence of a chain

a = z0 ≤ . . . ≤ zn = b such that for every i ∈ {0, . . . , n− 1} (i) or (ii) from

Definition 3.2 holds. If (i) holds, we get (zi, zi+1) ∈ (θ ∗ π). Now let assume

that (i) from the Definiton 3.2 does not hold and that (ii) from the Definition

3.2 holds for (zi, zi+1). We will distinguish two cases:

I. Let assume that zi/zi+1 → u/v, (u, v) ∈ (θ ∗ π) imply (u, v) ∈ π. We get

(zi, zi+1) ∈ ((θ ∗ π) ∗ π).

II. There remains the case when zi/zi+1 → u/v, (u, v) ∈ (θ∗π) but (u, v) /∈ π.

The π-almost weakly modularity of Con L yields the existence of a subquo-

tient a1/b1 ⊆ zi/zi+1, with (a1, b1) /∈ π, such that for every quotient r/s with

a1/b1 → r/s and (r, s) /∈ π there exists a quotient z/t with u/v → z/t and

r/s → z/t with (z, t) /∈ π. From (ii) of Definiton 3.2 it follows that there exists

a quotient u/v such that a1/b1 → u/v, (u, v) ∈ θ and (u, v) /∈ π. By π-almost

weakly modularity of L there exists a quotient z/t such that u/v → z/t and

(z, t) /∈ π. Then (z, t) ∈ θ and (z, t) ∈ θ ∗ π, so (z, t) ∈ π, a contradiction.

Therefore the case II. cannot occur, so for every i ∈ {0, . . . , n− 1}

(zi+1, zi) ∈ (θ ∗ π) or (zi+1, zi) ∈ ((θ ∗ π) ∗ π)

holds. Hence Con L is relative Stone lattice. �

Theorem 3.3 yields the following statements.

Corollary 3.4. ([4], Theorem 1) Let L be a lattice. Then Con L is a Stone

lattice if and only if the following conditions hold:

(1) L is ∆-almost weakly modular and

(2) every congruence of L is ∆-weakly separable.

Corollary 3.5. ([4], Corollary to Theorem 5) Let L be a semi-discrete lattice.

Then Con L is a relative Stone lattice if and only if for any prime quotients

p, q of L satisfying p → q and p → r either q → r or r → q holds.

Note that a lattice L is called semi-discrete if between all comparable pairs

of elements of L there exists a finite maximal chain.

4. Lattices with relative Ln-congruence lattices

In this section we give we a description of arbitrary lattices whose congruence

lattices considered as Heyting algebras satisfy the identity (L′
n).
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Definition 4.1. ([5], Definition 3) Let L be a lattice, a/b, u1, /v1, . . . , un+1/vn+1

be nontrivial quotients of L and n ≥ 1. Then L is said to be (π − n)-weakly

modular whenever

a/b → ui/vi and (ui, vi) /∈ π, i = 1, . . . , n + 1

imply that one of the following conditions holds:

(i) there exist i, j ∈ {1, . . . , n + 1} , i 6= j and a quotient u/v such that

ui/vi → u/v, uj/vj → u/v with (u, v) /∈ π.

(ii) for all i ∈ {1, . . . , n + 1} there is a proper subquotient ri/si ⊂ a/b such

that (ri, si) /∈ π and (ri, a) /∈ π or (si, b) /∈ π and a quotient zi/ti, such

that ri/si → zi/ti, ui/vi → zi/ti and (zi, ti) /∈ π.

Definition 4.2. ([5], Definition 4) Let L be a lattice, π ∈ Con L and n ≥ 1.

Then an (unordered) n-tuple θ1, . . . , θn (θ1, . . . , θn ≥ π) is said to be (π − n)-

separable if for any b < a there exists a chain b = z0 ≤ z1 ≤ . . . ≤ zn = a

such that for every i ∈ {0, . . . ,m− 1} either

(i) zi+1/zi → u/v and (u, v) ∈ (θ1 ∩ . . . ∩ θn) imply (u, v) ∈ π or

(ii) there exists some j ∈ {1, . . . , n} such that for every proper subquotient

r/s ⊂ zi+1/zi with (r, s) /∈ π and (r, zi+1) /∈ π or (s, zi) /∈ π the

following holds: (u, v) ∈ (θ1∩ . . .∩θj−1∩θj+1∩ . . .∩θn), r/s → u/v and

(u, v) /∈ π imply the existence of a quotient u′/v′ such that u/v → u′/v′

and (u′, v′) ∈ θj, (u′, v′) /∈ π.

Theorem 4.3. ([5], Theorem 4) Let L be a lattice and n ≥ 1. Con L is relative

(Ln)-lattice if and only if for every π ∈ Con L the following conditions hold:

(i) L is (π − n)-weakly modular and

(ii) every n-tuple of congruences θ1, . . . , θn on L such that θi ≥ π for all

i = 1, . . . , n is (π − n)-separable.

Proof. Assume that Con L satisfies the identity

(L′
n) ((θ1∧ . . .∧θn)∗π)∨((θ1∗π∧ . . .∧θn)∗π)∨ . . .∨((θ1∧ . . .∧θn∗π)∗π) = ∇.

We shall prove that L is (π − n)-weakly modular. Let π ∈ Con L and let

a/b, u1/v1, . . . , un+1/vn+1 be nontrivial quotients in L such that a/b → ui/vi

and (ui, vi) /∈ π for i = 1, . . . , n+1. Consider there are no i, j ∈ {1, . . . , n + 1},
i 6= j and a quotient u/v, (u, v) /∈ π such that ui/vi → u/v, uj/vj → u/v. Set

φ1 := θu1,v1 ∨ π, . . . , φn+1 := θun+1,vn+1 ∨ π.

We shall prove that

(1) (φ1 ∗ π) ∨ . . . ∨ (φn+1 ∗ π) = ∇.

We will show that φi ∩ φj = π for all i, j ∈ {1, . . . , n + 1} , i 6= j. It is

obvious that π ⊆ φi ∩ φj. To prove the equality suppose the existence of
6



elements u, v ∈ L, u > v, such that (u, v) /∈ π and (u, v) ∈ (θi ∩ θj). By

distributivity we get φi ∩ φj = (θui,vi
∧ θuj ,vj

) ∨ π. Thus there exists a chain

v = c0 ≤ . . . ≤ cn = u such that (ck+1, ck) ∈ (θui,vi
∧ θuj ,vj

) or (ck+1, ck) ∈ π.

Since (u, v) /∈ π there exists a nontrivial subquotient u′/v′ ⊆ u/v such that

(u′, v′) ∈ (θui,vi
∧ θuj ,vj

) and (u′, v′) /∈ π. By Lemma 1 there exists a nontrivial

subquotient u′′/v′′ ⊆ u′/v′ such that ui/vi → u′′/v′′, uj/vj → u′′/v′′ and

(u′′, v′′) /∈ π, a contradiction. Hence φi ∩ φj = π and φi ≤ φj ∗ π for all

i, j ∈ {1, . . . , n + 1} , i 6= j.

In the case n = 1 we have (φ1 ∗ π) ∨ ((φ1 ∗ π) ∗ π) = ∇. Since φ2 ≤ φ1 ∗ π,

we get φ2 ∗ π ≥ (φ1 ∗ π) ∗ π. So

∇ = (φ1 ∗ π) ∨ ((φ1 ∗ π) ∗ π) ≤ (φ1 ∗ π) ∨ (φ2 ∗ π),

thus (1) holds. Now assume n ≥ 2. Set

α1 := φ2 ∨ φ3 ∨ . . . ∨ φn ∨ φn+1

α2 := φ1 ∨ φ3 ∨ . . . ∨ φn ∨ φn+1

...

αn := φ1 ∨ φ2 ∨ . . . ∨ φn−1 ∨ φn+1.

We have

((α1∧ . . .∧αn)∗π)∨ ((α1 ∗π∧ . . .∧αn)∗π)∨ . . .∨ ((α1∧ . . .∧αn ∗π)∗π) = ∇.

We will prove that

(2) (α1∧ . . .∧αn) = φn+1, (α1∗π∧ . . .∧αn) = φ1, . . . , (α1∧ . . .∧αn∗π) = φn.

First we will show that

α1 ∧ . . . ∧ αn = φn+1.

Clearly φn+1 ⊆ α1∧ . . .∧αn. Suppose on the contrary that there exist u, v ∈ L,

(u, v) ∈ (α1 ∧ . . . ∧ αn) and (u, v) /∈ φn+1. As (u, v) ∈ α1, there exists some

i ∈ {2, . . . , n} and a subquotient u′/v′ ⊆ u/v, (u′, v′) /∈ π such that (u′, v′) ∈ φi

and (u′, v′) /∈ φn+1. We also have (u′, v′) ∈ αi, so there exist j ∈ {1, . . . , n}−{i}
and a subquotient u′′/v′′ ⊆ u′/v′, (u′′, v′′) /∈ π such that (u′′, v′′) ∈ φj. Then

(u′′, v′′) ∈ (φi ∩ φj) that contradicts φj ∩ φi = π, for i 6= j. Therefore

α1 ∧ . . . ∧ αn = φn+1.

Also

αi ∗ π = (φ1 ∗ π) ∧ . . . ∧ (φi−1 ∗ π) ∧ (φi+1 ∗ π) ∧ . . . ∧ (φn+1 ∗ π).

Using the fact that φi ∩ φj = π, for all i 6= j and the distributivity law we get

α1∧. . .∧(αi∗π)∧. . .∧αn = ((φ1∗π)∧. . .∧(φi−1∗π)∧φi∧(φi+1∗π)∧. . .∧(φn∗π))∨π.
7



As φi ≤ φj ∗ π and π ≤ φi, we have

α1 ∧ . . . ∧ (αi ∗ π) ∧ . . . ∧ αn = φi ∨ π = φi

for i = 1, . . . , n. Thus the equalities in (2) hold. Now (1) follows from the

assumption and (2). So, (a, b) ∈ (φ1 ∗ π) ∨ . . . ∨ (φn+1 ∗ π).

Let consider the existence of i ∈ {1, . . . , n + 1} with (a, b) ∈ (φi ∗ π). Then

also (ui, vi) ∈ φi ∩ (φi ∗ π), so we get (ui, vi) ∈ π, a contradiction. Thus for

every i ∈ {1, . . . , n + 1} there is a nontrivial proper subquotient ri/si ⊂ a/b,

where (ri, a) /∈ π or (si, b) /∈ π and (ri, si) /∈ π such that (ri, si) /∈ (φi ∗ π).

Then for every i ∈ {1, . . . , n + 1} there is a quotient z′i/t
′
i with ri/si → z′i/t

′
i

and (z′i, t
′
i) ∈ φi and (z′i, t

′
i) /∈ π. Thus for every i ∈ {1, . . . , n + 1} there is a

proper subquotient ri/si ⊂ a/b, where (ri, a) /∈ π or (si, b) /∈ π and (ri, si) /∈ π

and a quotient zi/ti, (zi, ti) /∈ π such that ri/si → zi/ti and ui/vi → zi/ti.

Hence, L is (π − n)-weakly modular.

Now, let π ∈ Con L, θ1, . . . , θn, θi ≥ π for i = 1, . . . , n and b < a. Since

(a, b) ∈ ((θ1∧ . . .∧θn)∗π)∨ ((θ1 ∗π∧ . . .∧θn)∗π)∨ . . .∨ ((θ1∧ . . .∧θn ∗π)∗π),

there is a chain b = z0 ≤ . . . ≤ zm = a such that for all i = 1, . . . ,m− 1

(zi+1, zi) ∈ ((θ1 ∧ . . . ∧ θn) ∗ π) or

(zi+1, zi) ∈ (θ1 ∧ . . . ∧ (θj ∗ π) ∧ . . . ∧ θn) ∗ π for some j ∈ {1, . . . , n} .

In the first case we get (i) from the definition of (π − n)-separability.

We should show that in the other case the condition (ii) from the definition

4.2 holds. Let (zi+1, zi) ∈ (θ1∧. . .∧(θj∗π)∧. . .∧θn)∗π for some j ∈ {1, . . . , n}.
Further let r/s ⊂ zi+1/zi be a nontrivial proper subquotient, (r, s) /∈ π and

(r, zi+1) /∈ π or (s, zi) /∈ π, and let r/s → u/v such that (u, v) /∈ π and

(u, v) ∈ (θ1 ∧ . . . ∧ θj−1 ∧ θj+1 ∧ . . . ∧ θn).

Suppose that for any u′ ≥ v′, the conditions u/v → u′/v′ and (u′, v′) ∈ θj

imply (u′, v′) ∈ π. By Lemma 2.2 we obtain (u, v) ∈ (θj ∗ π), hence we

get (u, v) ∈ (θ1 ∧ . . . ∧ θj−1 ∧ θj ∗ π ∧ θj+1 ∧ . . . ∧ θn). Since we also have

(u, v) ∈ ((θ1 ∧ . . . ∧ θj−1 ∧ θj ∗ π ∧ θj+1 ∧ . . . ∧ θn) ∗ π), we get (u, v) ∈ π, a

contradiction. Therefore there exist elements u′ > v′ such that u/v → u′/v′

and (u′, v′) ∈ θj. This yields that every (unordered) n-tuple θ1, . . . , θn ∈ Con L,

θi ≥ π, is (π − n)-separable.

Conversely, let L be (π − n)-weakly modular lattice and let every n-tuple

θ1, . . . , θn ∈ Con L, θi ≥ π, be (π − n)-separable. To prove that L satisfies the

identity (Ln) it is sufficient to show that for any b < a

(a, b) ∈ ((θ1 ∧ . . .∧ θn) ∗ π ∨ (θ1 ∗ π ∧ . . .∧ θn) ∗ π ∨ . . .∨ (θ1 ∧ . . .∧ θn ∗ π) ∗ π).

Let b < a. By (π − n)-weakly separability of θ1, . . . , θn, θi ≥ π, there exists

a chain b = c0 ≤ . . . ≤ cm = a such that for all i = 0, . . . ,m − 1 either the

condition (i) or the condition (ii) from the definition 4.2 holds.
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In the first case we immediately obtain (ci+1, ci) ∈ ((θ1 ∧ . . . ∧ θn) ∗ π).

Now assume that (i) of 4.2 does not hold, so there is a quotient un+1/vn+1,

(un+1, vn+1) /∈ π such that

ci+1/ci → un+1/vn+1 and also (un+1, vn+1) ∈ (θ1 ∧ . . . ∧ θn) and the condition

(ii) holds. Two cases can occur:

I. there exists j ∈ {1, . . . , n} such that the conditions ci+1/ci → u/v and

(u, v) ∈ (θ1 ∧ . . . ∧ (θj ∗ π) ∧ . . . ∧ θn) imply (u, v) ∈ π. By Lemma 2.2 we get

(ci+1, ci) ∈ ((θ1 ∧ . . . ∧ θj ∗ π ∧ . . . ∧ θn) ∗ π).

II. for every j ∈ {1, . . . , n} there exists a nontrivial quotient uj/vj such that

ci+1/ci → uj/vj and (uj, vj) ∈ (θ1∧. . .∧(θj∗π)∧. . .∧θn) with (uj, vj) /∈ π. As L

is (π−n)-weakly modular lattice, (i) or (ii) from the Definition 4.1 holds for the

quotients ci+1/ci, uj/vj, j = 1, . . . , n + 1. If the condition (i) holds, then there

exist i, j ∈ {1, . . . , n + 1} , i < j and a quotient u/v such that ui/vi → u/v,

uj/vj → u/v with (u, v) /∈ π. But then (u, v) ∈ (θi ∗ π) and (u, v) ∈ θi whence

(u, v) ∈ π, a contradiction. Now let the condition (ii) of 4.1 hold. Hence for

every j ∈ {1, . . . , n + 1} there exists a proper subquotient rj/sj ⊂ ci+1/ci,

(rj, sj) /∈ π and (rj, ci+1) /∈ π or (sj, ci) /∈ π, and a quotient zj/tj such that

rj/sj → zj/tj, uj/vj → zj/tj and (zj, tj) /∈ π. Thus for all j = 1, . . . , n we get

(zj, tj) ∈ (θ1∧. . .∧(θj∗π)∧. . .∧θn). Since the condition (ii) from the Definition

4.2 holds, it follows that for some j ∈ {1, . . . , n} there exists a quotient z/t,

(z, t) /∈ π with zj/tj → z/t and (z, t) ∈ θj. Since (zj, tj) ∈ (θj ∗ π), we get

(z, t) ∈ (θj ∧ (θj ∗ π)), so (z, t) ∈ π, a contradiction. Therefore the case II is

impossible.

So for every i ∈ {1, . . . ,m− 1}

(ci+1, ci) ∈ ((θ1 ∧ . . . ∧ θn) ∗ π) or

(ci+1, ci) ∈ ((θ1 ∧ . . . ∧ θj ∗ π ∧ . . . ∧ θn) ∗ π) for some j ∈ {1, . . . , n} ,

which yields

(a, b) ∈ ((θ1∧ . . .∧θn)∗π)∨ ((θ1 ∗π∧ . . .∧θn)∗π)∨ . . .∨ ((θ1∧ . . .∧θn ∗π)∗π),

so the lattice L satisfies the identity (L′
n).) �

As corollaries we obtain the following results.

Corollary 4.4. ([6], Theorem 1) Let L be a lattice and n ≥ 1. Con L is

(Ln)-lattice if and only if the following conditions hold:

(i) L is (∆− n)-weakly modular and

(ii) every n-tuple θ1, . . . , θn from Con L is (∆− n)-separable.

Corollary 4.5. ([7], Corollary 3) Let L be a semi-discrete lattice and n ≥ 1.

Then Con L is a relative (Ln)-lattice if and only if for any prime quotients

p, q1, . . . , qn+1 of L the relations p → qk, k = 1, . . . , n + 1 imply qi → qj or

qj → qi for some i, j ∈ {1, . . . , n + 1}, i 6= j.
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5. Conclusion

The presented work is related to the problems III.5 and III.6 of G. Grätzer’s

monograph [2] which ask for a characterization of lattices with Stone and (Ln)-

congruence lattices for arbitrary n ≥ 1. We present a description of arbitrary

lattices whose congruence lattices considered as Heyting algebras are relative

Stone (Section 3) and relative (Ln)-lattices for arbitrary n ≥ 1 (Section 4).

We use the method of description in terms of weak projectivity of quo-

tients introduced by G. Grätzer and E. T. Schmidt [3], and later developed

by T. Katriňák and M. Haviar in [8], [4], [7], [6]. However, our method is

slightly alternative to the ones presented before as it considers the congruence

lattices of lattices as Heyting algebras and uses entirely the identity (L′
n) in

terms of relative pseudocomplement. We present self-contained proofs for the

characterizations of lattices with relative (Ln)- and relative Stone congruence

lattices. As corollaries we obtain descriptions of lattices with Stone and (Ln)-

congruence lattices, as well as descriptions of semi-lattices with relative Stone

and relative (Ln)-congruence lattices for arbitrary n ≥ 1.
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