UNIVERZITA MATEJA BELA V BANSKEJ BYSTRICI FAKULTA PRÍRODNÝCH VIED

KATEDRA MATEMATIKY

O zväzoch kongruencií zväzov

 $(\check{S}VO\check{C})$

Autor práce: Daniela Guffová Vedúci práce: Doc. RNDr. Miroslav Haviar, CSc.

2009

UNIVERSITY OF MATEJ BEL IN BANSKÁ BYSTRICA FACULTY OF NATURAL SCIENCES

DEPARTMENT OF MATHEMATICS

On Congruence Lattices of Lattices

(Student Competition)

Author: Daniela Guffová Supervisor: Doc. RNDr. Miroslav Haviar, CSc.

2009

I would like to thank my supervisor, Dr Miroslav Haviar, for giving me incentive ideas and facilitating my work.

.

Contents

1.	Introduction	1
2.	Preliminaries	2
3.	Lattices with relative Stone congruence lattices	3
4.	Lattices with relative L_n -congruence lattices	5
5.	Conclusion	10
References		11

1. INTRODUCTION

One of the basic facts about the congruence lattices of lattices is that they are distributive and pseudocomplemented. T. Tanaka [11], P. Crawley [1], G. Grätzer and E. T. Schmidt [3] have characterized those lattices whose congruence lattices are Boolean. In the monograph [2], G. Grätzer posed problems (problems III.5 and III.6) of characterizing those lattices whose congruence lattices considered as pseudocomplemented lattices belong to the *n*th Lee's equational class B_n of distributive pseudocomplemented lattices described by the identity

$$(L_n) \quad (x_1 \wedge \ldots \wedge x_n)^* \vee (x_1^* \wedge \ldots \wedge x_n)^* \vee \ldots \vee (x_1 \wedge \ldots \wedge x_n^*)^* = 1.$$

Distributive pseudocomplemented lattices satisfying the identity (L_n) are called (L_n) -lattices [6], [7]. As the class B_1 is the class of all Stone lattices, (L_1) -lattices are in fact Stone lattices. Lattices whose congruence lattices are Stone have been characterized by T. Katriňák [8]. Later, M. Haviar [6] characterized lattices with (L_n) -congruence lattices for arbitrary $n \geq 1$.

Distributive pseudocomplemented lattices in which every interval satisfies the identity (L_n) are called relative (L_n) -lattices. In [4], M. Haviar and T. Katriňák characterized lattices with relative Stone congruence lattices. Lattices with relative (L_n) -congruence lattices were characterized later by M. Haviar in [6]. Semi-discrete lattices with (L_n) - and relative (L_n) -congruence lattices were characterized by M. Haviar and T. Katriňák in [7].

The congruence lattices of lattices are also relatively pseudocomplemented, hence they can be investigated as Heyting algebras. It is natural to seek for a characterization of lattices whose congruence lattices satisfy identities formulated in terms of relative pseudocomplement. In particular, relative (L_n) lattices can be characterized by the identity

$$(L'_n) \quad (x_1 \wedge \ldots \wedge x_n) * y \lor (x_1 * y \wedge \ldots \wedge x_n) * y \lor \ldots \lor (x_1 \wedge \ldots \wedge x_n * y) * y = 1.$$

In [7] only semi-discrete lattices whose congruence lattices satisfy the identity (L'_n) were described. In this work we present a description of arbitrary lattices whose congruence lattices considered as Heyting algebras satisfy the identity (L'_n) (section 4). In particular, one obtains a description of lattices with relative (L_1) -congruence lattices. In Section 3 we give a slightly different description of lattices with relative Stone congruence lattices than is the one obtained in Section 4 in case n = 1.

Our method is alternative to the one presented in [6] and [4] where the identity (L'_n) was not used and the respective descriptions of lattices with relative (L_n) - and relative Stone congruence lattices were presented by translating the corresponding conditions for factor lattices L/π (π is a congruence of L) with (L_n) - and Stone congruence lattices without the need to write down the proofs for the given characterizations. In our approach presented here we entirely use the identities (L'_n) and we actually write down self-contained proofs for the characterizations of lattices with relative (L_n) - and relative Stone congruence lattices.

2. Preliminaries

The following basic concepts and facts can be found in [2], [4], [7] or [6].

Let Con L denote the lattice of all congruences on a lattice L with Δ and ∇ , the smallest and the largest congruence relation. The lattice Con L is distributive, moreover Con L satisfies the infinite distributivity law

$$\theta \land \bigvee (\alpha_i : i \in I) = \bigvee (\theta \land \alpha_i : i \in I)$$

for any $\theta, \alpha_i \in \operatorname{Con} L$.

It follows that for any $\alpha, \beta \in \text{Con } L$ there exists a largest congruence δ such that $\alpha \wedge \delta \leq \beta$. It is obvious that $\delta = \bigvee (\sigma : \alpha \wedge \sigma \leq \beta)$. The congruence δ is called the *relative pseudocomplement of* α *with respect to* β and denoted by $\alpha * \beta$. Therefore $\langle \text{Con } L, \lor, \land, *, \Delta, \nabla \rangle$ is a complete relatively pseudocomplemented lattice, i.e. a complete Heyting algebra.

Recall that an algebra $\langle H, \vee, \wedge, *, 0, 1 \rangle$ of type (2, 2, 2, 0, 0) is a *Heyting algebra* if it satisfies:

(H1) $\langle H, \vee, \wedge \rangle$ is a distributive lattice,

(H2) $x \wedge 0 = 0, x \vee 1 = 1,$

(H3) x * x = 1,

(H4) $(x * y) \land y = y, x \land (x * y) = x \land y,$

(H5) $x * (y \land z) = (x * y) \land (x * z), (x \lor y) * z = (x * z) \land (y * z).$

The Heyting algebras were introduced by G. Birkhoff under the name *Brouw*erian algebras.

K. B. Lee [10] has shown that the lattice of all equational subclasses of the class B_{ω} of all distributive pseudocomplemented lattices (*p*-algebras) is a chain

$$B_{-1} \subset B_0 \subset B_1 \subset \ldots \subset B_n \subset \ldots \subset B_\omega$$

of type $\omega + 1$, where B_{-1}, B_0, B_1 are the classes of all trivial p-algebras, Boolean algebras, and Stone algebras, respectively. Moreover, a distributive pseudocomplemented lattice belongs to the class B_n $(n \ge 1)$ if and only if it satisfies the identity

$$(L_n) \quad (x_1 \wedge \ldots \wedge x_n)^* \vee (x_1^* \wedge \ldots \wedge x_n)^* \vee \ldots \vee (x_1 \wedge \ldots \wedge x_n^*)^* = 1,$$

i.e. is an (L_n) -lattice.

A distributive relatively pseudocomplemented lattice $(L, \lor, \land, *, 0, 1)$ is a relative Stone lattice if and only if

$$x * y \lor (x * y) * y = 1$$

for every $x, y \in L$. A distributive relatively pseudocomplemented lattice L is a relative (L_n) -lattice $(n \ge 1)$ if and only if it satisfies the identity

$$(L'_n) \quad (x_1 \wedge \ldots \wedge x_n) * y \lor (x_1 * y \wedge \ldots \wedge x_n) * y \lor \ldots \lor (x_1 \wedge \ldots \wedge x_n * y) * y = 1.$$

One of the mostly used concepts in this work is the concept of weak projectivity of quotients. We denote a/b an ordered pair of elements a, b of a lattice L satisfying $b \le a$; a/b is called a *quotient* of L. A quotient c/d is a *subquotient* of a/b if $b \le d \le c \le a$. We call a/b a *proper quotient* if b < a. If $b \prec a$, i.e. bis covered by a, then a/b is called a *prime quotient*.

We will say that a quotient a/b is weakly projective to a quotient c/d and use the notation $a/b \rightarrow c/d$ if there exist finitely many elements $x_1, \ldots, x_n \in L$ such that

$$c = (\dots ((a \lor x_1) \land x_2) \lor \dots) \lor x_n,$$

$$d = (\dots ((b \lor x_1) \land x_2) \lor \dots) \lor x_n.$$

The importance of weak projectivity in the description of lattice congruences is given by the following two lemmas.

Lemma 2.1. ([6], Lemma 1) For any principal congruence $\theta_{a,b} \in \text{Con } L$,

$$(c,d) \in \theta_{a,b},$$

 $(d \le c, b \le a)$ if and only if there is a finite chain $d = y_0 \le \ldots \le y_n = c$ such that $a/b \to y_{i+1}/y_i$ for all $i \in \{0, \ldots, n-1\}$.

Lemma 2.2. ([6], Lemma 2) Let L be a lattice and $\theta, \varphi \in \text{Con } L$. then the relative pseudocomplement of θ with respect to φ is

$$\theta * \varphi = \bigvee (\theta_{u,v}, (u,v) \in S),$$

where S is the set of all pairs of elements (u, v) $(u, v \in L)$ such that $u/v \to z/t$ and $(z, t) \in \theta$ implies $(z, t) \in \varphi$ for all $z, t \in L$.

3. Lattices with relative Stone congruence lattices

In this section we give a description of lattices with relative Stone congruence lattices.

Definition 3.1. ([4], Definition 1) Let L be a lattice, $\pi \in \text{Con } L$ and a/b, u/vquotients of L. Then L is said to be π -almost weakly modular whenever $a/b \to u/v$ and $(u, v) \notin \pi$ imply the existence of a subquotient $a_1/b_1 \subseteq a/b$ with $(a_1, b_1) \notin \pi$ such that for every quotient r/s with $a_1/b_1 \to r/s$ and $(r, s) \notin \pi$ there exists a quotient z/t with $r/s \to z/t$, $u/v \to z/t$ and $(z, t) \notin \pi$.

Definition 3.2. ([4], Definition 2) Let *L* be a lattice and $\theta, \pi \in \text{Con } L, \theta \geq \pi$. Then θ is said to be π -weakly separable if for any a < b in *L* there exists a chain $a = z_0 \leq z_1 \leq \ldots \leq z_n = b$ such that for each $i \in \{0, \ldots, n-1\}$ either

- (i) $z_{i+1}/z_i \rightarrow u/v$ and $(u, v) \in \theta$ imply $(u, v) \in \pi$ or
- (ii) for every subquotient $r/s \subseteq z_{i+1}/z_i$ with $(r,s) \notin \pi$, there exists a quotient u/v with $r/s \to u/v$ and $(u,v) \in \theta$, $(u,v) \notin \pi$.

Theorem 3.3. ([4], Theorem 2) Let L be a lattice. The lattice Con L is relative Stone if and only if for every $\pi \in \text{Con } L$ the following conditions hold:

- (1) L is π -almost weakly modular and
- (2) every congruence $\theta \geq \pi$ is π -weakly separable.

Proof. First we will prove the necessity.

Let $\operatorname{Con} L$ be relatively Stone lattice, i. e. it satisfies the identity

$$(\theta * \pi) \lor ((\theta * \pi) * \pi) = \nabla,$$

for all congruences $\theta, \pi \in \text{Con } L$. Let a/b, u/v be quotients of L such that $a/b \to u/v$ with $(u, v) \notin \pi$ and a > b, u > v. Set

$$\phi := \theta_{u,v} \vee \pi.$$

Since $\operatorname{Con} L$ is relatively Stone, it follows that

$$(a,b) \in (\phi * \pi) \lor ((\phi * \pi) * \pi) = (\theta_{u,v} * \pi) \lor ((\theta_{u,v} * \pi) * \pi),$$

so there exists a chain $b = c_0 \leq c_1 \leq \ldots \leq c_n = a$ such that for every $i \in \{0, \ldots, n-1\}$

$$(c_{i+1}, c_i) \in (\theta_{u,v} * \pi) \text{ or } (c_{i+1}, c_i) \in ((\theta_{u,v} * \pi) * \pi).$$

If for every $i \in \{0, ..., n-1\}$ the first case holds, we get $(a, b) \in \theta_{u,v} * \pi$, that is, $(u, v) \in \theta_{u,v} * \pi$, so $(u, v) \in \pi$, a contradiction.

Thus there is a subquotient $a_1/b_1 \subseteq a/b$ such that $(a_1, b_1) \notin (\theta_{u,v} * \pi)$ and $(a_1, b_1) \in ((\theta_{u,v} * \pi) * \pi)$. Let r/s be a quotient such that $a_1/b_1 \to r/s$ and $(r, s) \notin \pi$. Then $(r, s) \in ((\theta_{u,v} * \pi) * \pi)$.

Whenever the conditions $r/s \to z'/t'$, $(z', t') \in \theta_{u,v}$ would imply $(z', t') \in \pi$ we would get $(r, s) \in (\theta_{u,v} * \pi)$, so $(r, s) \in \pi$ would also hold, a contradiction.

Hence there exists a quotient z'/t' such that $r/s \to z'/t'$, with $(z', t') \in \theta_{u,v}$ and $(z', t') \notin \pi$. Since $(z', t') \in \theta_{u,v}$, there exists a subquotient $z/t \subseteq z'/t'$ such that $u/v \to z/t$. As also $r/s \to z/t$, Con L is π -almost weakly modular.

Now let $\theta \in \text{Con } L$ with $\theta \geq \pi$. Since Con L is relative Stone lattice, $(a,b) \in (\theta * \pi) \lor ((\theta * \pi) * \pi)$ for any a > b. Therefore there exists a chain $b = z_0 \leq \ldots \leq z_m = a$ such that

$$(z_{i+1}, z_i) \in (\theta * \pi) \text{ or } (z_{i+1}, z_i) \in ((\theta * \pi) * \pi).$$

In the first case we get that $z_{i+1}/z_i \to u/v$ and $(u, v) \in \theta$ implies $(u, v) \in \pi$. So we get the condition (i) from the Definition 3.2. Now let $(z_{i+1}, z_i) \in ((\theta * \pi) * \pi)$. Let r/s be a subquotient of the quotient z_{i+1}/z_i with $(r, s) \notin \pi$ and $r/s \to u/v$, $(u, v) \notin \pi$. If for every $u' \geq v'$ the conditions $u/v \to u'/v'$ and $(u', v') \in \theta$ imply $(u', v') \in \pi$, then $(u, v) \in (\theta * \pi)$. So we would get $(u, v) \in ((\theta * \pi) * \pi)$ and $(u, v) \in (\theta * \pi)$, which yields $(u, v) \in \pi$, a contradiction.

So there exists a quotient u'/v' such that $u/v \to u'/v'$, $(u', v') \in \theta$ and $(u', v') \notin \pi$. The π -weakly separability of any congruence $\theta \in \text{Con } L$ has been proved.

Now we will prove the sufficiency. Let a < b and let $\theta, \pi \in \text{Con } L, \theta \geq \pi$. From π -weakly separability of congruence θ follows the existence of a chain $a = z_0 \leq \ldots \leq z_n = b$ such that for every $i \in \{0, \ldots, n-1\}$ (i) or (ii) from Definition 3.2 holds. If (i) holds, we get $(z_i, z_{i+1}) \in (\theta * \pi)$. Now let assume that (i) from the Definition 3.2 does not hold and that (ii) from the Definition 3.2 holds for (z_i, z_{i+1}) . We will distinguish two cases:

I. Let assume that $z_i/z_{i+1} \to u/v$, $(u, v) \in (\theta * \pi)$ imply $(u, v) \in \pi$. We get $(z_i, z_{i+1}) \in ((\theta * \pi) * \pi)$.

II. There remains the case when $z_i/z_{i+1} \to u/v$, $(u, v) \in (\theta * \pi)$ but $(u, v) \notin \pi$. The π -almost weakly modularity of Con L yields the existence of a subquotient $a_1/b_1 \subseteq z_i/z_{i+1}$, with $(a_1, b_1) \notin \pi$, such that for every quotient r/s with $a_1/b_1 \to r/s$ and $(r, s) \notin \pi$ there exists a quotient z/t with $u/v \to z/t$ and $r/s \to z/t$ with $(z, t) \notin \pi$. From (ii) of Definiton 3.2 it follows that there exists a quotient u/v such that $a_1/b_1 \to u/v$, $(u, v) \in \theta$ and $(u, v) \notin \pi$. By π -almost weakly modularity of L there exists a quotient z/t such that $u/v \to z/t$ and $(z, t) \notin \pi$. Then $(z, t) \in \theta$ and $(z, t) \in \theta * \pi$, so $(z, t) \in \pi$, a contradiction. Therefore the case II. cannot occur, so for every $i \in \{0, \ldots, n-1\}$

$$(z_{i+1}, z_i) \in (\theta * \pi) \text{ or } (z_{i+1}, z_i) \in ((\theta * \pi) * \pi)$$

holds. Hence $\operatorname{Con} L$ is relative Stone lattice.

Theorem 3.3 yields the following statements.

Corollary 3.4. ([4], Theorem 1) Let L be a lattice. Then Con L is a Stone lattice if and only if the following conditions hold:

- (1) L is Δ -almost weakly modular and
- (2) every congruence of L is Δ -weakly separable.

Corollary 3.5. ([4], Corollary to Theorem 5) Let L be a semi-discrete lattice. Then Con L is a relative Stone lattice if and only if for any prime quotients p, q of L satisfying $p \rightarrow q$ and $p \rightarrow r$ either $q \rightarrow r$ or $r \rightarrow q$ holds.

Note that a lattice L is called *semi-discrete* if between all comparable pairs of elements of L there exists a finite maximal chain.

4. Lattices with relative L_n -congruence lattices

In this section we give we a description of arbitrary lattices whose congruence lattices considered as Heyting algebras satisfy the identity (L'_n) .

Definition 4.1. ([5], Definition 3) Let L be a lattice, $a/b, u_1, /v_1, \ldots, u_{n+1}/v_{n+1}$ be nontrivial quotients of L and $n \ge 1$. Then L is said to be $(\pi - n)$ -weakly modular whenever

$$a/b \rightarrow u_i/v_i$$
 and $(u_i, v_i) \notin \pi$, $i = 1, \dots, n+1$

imply that one of the following conditions holds:

- (i) there exist $i, j \in \{1, ..., n+1\}, i \neq j$ and a quotient u/v such that $u_i/v_i \rightarrow u/v, u_j/v_j \rightarrow u/v$ with $(u, v) \notin \pi$.
- (ii) for all $i \in \{1, ..., n+1\}$ there is a proper subquotient $r_i/s_i \subset a/b$ such that $(r_i, s_i) \notin \pi$ and $(r_i, a) \notin \pi$ or $(s_i, b) \notin \pi$ and a quotient z_i/t_i , such that $r_i/s_i \to z_i/t_i$, $u_i/v_i \to z_i/t_i$ and $(z_i, t_i) \notin \pi$.

Definition 4.2. ([5], Definition 4) Let L be a lattice, $\pi \in \text{Con } L$ and $n \geq 1$. Then an (unordered) n-tuple $\theta_1, \ldots, \theta_n$ ($\theta_1, \ldots, \theta_n \geq \pi$) is said to be $(\pi - n)$ -separable if for any b < a there exists a chain $b = z_0 \leq z_1 \leq \ldots \leq z_n = a$ such that for every $i \in \{0, \ldots, m-1\}$ either

- (i) $z_{i+1}/z_i \to u/v$ and $(u,v) \in (\theta_1 \cap \ldots \cap \theta_n)$ imply $(u,v) \in \pi$ or
- (ii) there exists some $j \in \{1, ..., n\}$ such that for every proper subquotient $r/s \subset z_{i+1}/z_i$ with $(r, s) \notin \pi$ and $(r, z_{i+1}) \notin \pi$ or $(s, z_i) \notin \pi$ the following holds: $(u, v) \in (\theta_1 \cap \ldots \cap \theta_{j-1} \cap \theta_{j+1} \cap \ldots \cap \theta_n), r/s \to u/v$ and $(u, v) \notin \pi$ imply the existence of a quotient u'/v' such that $u/v \to u'/v'$ and $(u', v') \in \theta_j, (u', v') \notin \pi$.

Theorem 4.3. ([5], Theorem 4) Let L be a lattice and $n \ge 1$. Con L is relative (L_n) -lattice if and only if for every $\pi \in \text{Con } L$ the following conditions hold:

- (i) L is (πn) -weakly modular and
- (ii) every n-tuple of congruences $\theta_1, \ldots, \theta_n$ on L such that $\theta_i \ge \pi$ for all $i = 1, \ldots, n$ is (πn) -separable.

Proof. Assume that $\operatorname{Con} L$ satisfies the identity

$$(L'_n) ((\theta_1 \wedge \ldots \wedge \theta_n) * \pi) \vee ((\theta_1 * \pi \wedge \ldots \wedge \theta_n) * \pi) \vee \ldots \vee ((\theta_1 \wedge \ldots \wedge \theta_n * \pi) * \pi) = \nabla.$$

We shall prove that L is $(\pi - n)$ -weakly modular. Let $\pi \in \text{Con } L$ and let $a/b, u_1/v_1, \ldots, u_{n+1}/v_{n+1}$ be nontrivial quotients in L such that $a/b \to u_i/v_i$ and $(u_i, v_i) \notin \pi$ for $i = 1, \ldots, n+1$. Consider there are no $i, j \in \{1, \ldots, n+1\}, i \neq j$ and a quotient u/v, $(u, v) \notin \pi$ such that $u_i/v_i \to u/v, u_j/v_j \to u/v$. Set

$$\phi_1 := \theta_{u_1, v_1} \lor \pi, \ \dots, \ \phi_{n+1} := \theta_{u_{n+1}, v_{n+1}} \lor \pi.$$

We shall prove that

(1)
$$(\phi_1 * \pi) \lor \ldots \lor (\phi_{n+1} * \pi) = \nabla$$

We will show that $\phi_i \cap \phi_j = \pi$ for all $i, j \in \{1, \ldots, n+1\}, i \neq j$. It is obvious that $\pi \subseteq \phi_i \cap \phi_j$. To prove the equality suppose the existence of

elements $u, v \in L$, u > v, such that $(u, v) \notin \pi$ and $(u, v) \in (\theta_i \cap \theta_j)$. By distributivity we get $\phi_i \cap \phi_j = (\theta_{u_i,v_i} \wedge \theta_{u_j,v_j}) \vee \pi$. Thus there exists a chain $v = c_0 \leq \ldots \leq c_n = u$ such that $(c_{k+1}, c_k) \in (\theta_{u_i,v_i} \wedge \theta_{u_j,v_j})$ or $(c_{k+1}, c_k) \in \pi$. Since $(u, v) \notin \pi$ there exists a nontrivial subquotient $u'/v' \subseteq u/v$ such that $(u', v') \in (\theta_{u_i,v_i} \wedge \theta_{u_j,v_j})$ and $(u', v') \notin \pi$. By Lemma 1 there exists a nontrivial subquotient $u''/v'' \subseteq u'/v'$ such that $u_i/v_i \to u''/v''$, $u_j/v_j \to u''/v''$ and $(u'', v'') \notin \pi$, a contradiction. Hence $\phi_i \cap \phi_j = \pi$ and $\phi_i \leq \phi_j * \pi$ for all $i, j \in \{1, \ldots, n+1\}, i \neq j$.

In the case n = 1 we have $(\phi_1 * \pi) \lor ((\phi_1 * \pi) * \pi) = \nabla$. Since $\phi_2 \le \phi_1 * \pi$, we get $\phi_2 * \pi \ge (\phi_1 * \pi) * \pi$. So

$$\nabla = (\phi_1 * \pi) \lor ((\phi_1 * \pi) * \pi) \le (\phi_1 * \pi) \lor (\phi_2 * \pi),$$

thus (1) holds. Now assume $n \ge 2$. Set

$$\alpha_{1} := \phi_{2} \lor \phi_{3} \lor \ldots \lor \phi_{n} \lor \phi_{n+1}$$
$$\alpha_{2} := \phi_{1} \lor \phi_{3} \lor \ldots \lor \phi_{n} \lor \phi_{n+1}$$
$$\vdots$$
$$\alpha_{n} := \phi_{1} \lor \phi_{2} \lor \ldots \lor \phi_{n-1} \lor \phi_{n+1}.$$

We have

$$((\alpha_1 \wedge \ldots \wedge \alpha_n) * \pi) \lor ((\alpha_1 * \pi \wedge \ldots \wedge \alpha_n) * \pi) \lor \ldots \lor ((\alpha_1 \wedge \ldots \wedge \alpha_n * \pi) * \pi) = \nabla.$$

We will prove that

(2)
$$(\alpha_1 \wedge \ldots \wedge \alpha_n) = \phi_{n+1}, \ (\alpha_1 * \pi \wedge \ldots \wedge \alpha_n) = \phi_1, \ldots, \ (\alpha_1 \wedge \ldots \wedge \alpha_n * \pi) = \phi_n.$$

First we will show that

$$\alpha_1 \wedge \ldots \wedge \alpha_n = \phi_{n+1}.$$

Clearly $\phi_{n+1} \subseteq \alpha_1 \land \ldots \land \alpha_n$. Suppose on the contrary that there exist $u, v \in L$, $(u, v) \in (\alpha_1 \land \ldots \land \alpha_n)$ and $(u, v) \notin \phi_{n+1}$. As $(u, v) \in \alpha_1$, there exists some $i \in \{2, \ldots, n\}$ and a subquotient $u'/v' \subseteq u/v$, $(u', v') \notin \pi$ such that $(u', v') \in \phi_i$ and $(u', v') \notin \phi_{n+1}$. We also have $(u', v') \in \alpha_i$, so there exist $j \in \{1, \ldots, n\} - \{i\}$ and a subquotient $u''/v'' \subseteq u'/v'$, $(u'', v'') \notin \pi$ such that $(u'', v'') \in \phi_j$. Then $(u'', v'') \in (\phi_i \cap \phi_j)$ that contradicts $\phi_j \cap \phi_i = \pi$, for $i \neq j$. Therefore

$$\alpha_1 \wedge \ldots \wedge \alpha_n = \phi_{n+1}.$$

Also

$$\alpha_i * \pi = (\phi_1 * \pi) \wedge \ldots \wedge (\phi_{i-1} * \pi) \wedge (\phi_{i+1} * \pi) \wedge \ldots \wedge (\phi_{n+1} * \pi).$$

Using the fact that $\phi_i \cap \phi_j = \pi$, for all $i \neq j$ and the distributivity law we get $\alpha_1 \wedge \ldots \wedge (\alpha_i * \pi) \wedge \ldots \wedge \alpha_n = ((\phi_1 * \pi) \wedge \ldots \wedge (\phi_{i-1} * \pi) \wedge \phi_i \wedge (\phi_{i+1} * \pi) \wedge \ldots \wedge (\phi_n * \pi)) \vee \pi.$ As $\phi_i \leq \phi_j * \pi$ and $\pi \leq \phi_i$, we have

 $\alpha_1 \wedge \ldots \wedge (\alpha_i * \pi) \wedge \ldots \wedge \alpha_n = \phi_i \vee \pi = \phi_i$

for i = 1, ..., n. Thus the equalities in (2) hold. Now (1) follows from the assumption and (2). So, $(a, b) \in (\phi_1 * \pi) \lor ... \lor (\phi_{n+1} * \pi)$.

Let consider the existence of $i \in \{1, \ldots, n+1\}$ with $(a, b) \in (\phi_i * \pi)$. Then also $(u_i, v_i) \in \phi_i \cap (\phi_i * \pi)$, so we get $(u_i, v_i) \in \pi$, a contradiction. Thus for every $i \in \{1, \ldots, n+1\}$ there is a nontrivial proper subquotient $r_i/s_i \subset a/b$, where $(r_i, a) \notin \pi$ or $(s_i, b) \notin \pi$ and $(r_i, s_i) \notin \pi$ such that $(r_i, s_i) \notin (\phi_i * \pi)$. Then for every $i \in \{1, \ldots, n+1\}$ there is a quotient z'_i/t'_i with $r_i/s_i \to z'_i/t'_i$ and $(z'_i, t'_i) \in \phi_i$ and $(z'_i, t'_i) \notin \pi$. Thus for every $i \in \{1, \ldots, n+1\}$ there is a proper subquotient $r_i/s_i \subset a/b$, where $(r_i, a) \notin \pi$ or $(s_i, b) \notin \pi$ and $(r_i, s_i) \notin \pi$ and a quotient $z_i/t_i, (z_i, t_i) \notin \pi$ such that $r_i/s_i \to z_i/t_i$ and $u_i/v_i \to z_i/t_i$. Hence, L is $(\pi - n)$ -weakly modular.

Now, let $\pi \in \text{Con } L$, $\theta_1, \ldots, \theta_n$, $\theta_i \ge \pi$ for $i = 1, \ldots, n$ and b < a. Since $(a, b) \in ((\theta_1 \land \ldots \land \theta_n) \ast \pi) \lor ((\theta_1 \ast \pi \land \ldots \land \theta_n) \ast \pi) \lor \ldots \lor ((\theta_1 \land \ldots \land \theta_n \ast \pi) \ast \pi),$ there is a chain $b = z_0 \le \ldots \le z_m = a$ such that for all $i = 1, \ldots, m - 1$

 $(z_{i+1}, z_i) \in ((\theta_1 \wedge \ldots \wedge \theta_n) * \pi)$ or

 $(z_{i+1}, z_i) \in (\theta_1 \land \ldots \land (\theta_j \ast \pi) \land \ldots \land \theta_n) \ast \pi \text{ for some } j \in \{1, \ldots, n\}.$

In the first case we get (i) from the definition of $(\pi - n)$ -separability.

We should show that in the other case the condition (ii) from the definition 4.2 holds. Let $(z_{i+1}, z_i) \in (\theta_1 \land \ldots \land (\theta_j * \pi) \land \ldots \land \theta_n) * \pi$ for some $j \in \{1, \ldots, n\}$. Further let $r/s \subset z_{i+1}/z_i$ be a nontrivial proper subquotient, $(r, s) \notin \pi$ and $(r, z_{i+1}) \notin \pi$ or $(s, z_i) \notin \pi$, and let $r/s \to u/v$ such that $(u, v) \notin \pi$ and $(u, v) \in (\theta_1 \land \ldots \land \theta_{j-1} \land \theta_{j+1} \land \ldots \land \theta_n)$.

Suppose that for any $u' \geq v'$, the conditions $u/v \to u'/v'$ and $(u', v') \in \theta_j$ imply $(u', v') \in \pi$. By Lemma 2.2 we obtain $(u, v) \in (\theta_j * \pi)$, hence we get $(u, v) \in (\theta_1 \land \ldots \land \theta_{j-1} \land \theta_j * \pi \land \theta_{j+1} \land \ldots \land \theta_n)$. Since we also have $(u, v) \in ((\theta_1 \land \ldots \land \theta_{j-1} \land \theta_j * \pi \land \theta_{j+1} \land \ldots \land \theta_n) * \pi)$, we get $(u, v) \in \pi$, a contradiction. Therefore there exist elements u' > v' such that $u/v \to u'/v'$ and $(u', v') \in \theta_j$. This yields that every (unordered) n-tuple $\theta_1, \ldots, \theta_n \in \text{Con } L$, $\theta_i \geq \pi$, is $(\pi - n)$ -separable.

Conversely, let L be $(\pi - n)$ -weakly modular lattice and let every n-tuple $\theta_1, \ldots, \theta_n \in \text{Con } L, \ \theta_i \geq \pi$, be $(\pi - n)$ -separable. To prove that L satisfies the identity (L_n) it is sufficient to show that for any b < a

$$(a,b) \in ((\theta_1 \land \ldots \land \theta_n) \ast \pi \lor (\theta_1 \ast \pi \land \ldots \land \theta_n) \ast \pi \lor \ldots \lor (\theta_1 \land \ldots \land \theta_n \ast \pi) \ast \pi).$$

Let b < a. By $(\pi - n)$ -weakly separability of $\theta_1, \ldots, \theta_n, \theta_i \ge \pi$, there exists a chain $b = c_0 \le \ldots \le c_m = a$ such that for all $i = 0, \ldots, m - 1$ either the condition (i) or the condition (ii) from the definition 4.2 holds. In the first case we immediately obtain $(c_{i+1}, c_i) \in ((\theta_1 \wedge \ldots \wedge \theta_n) * \pi)$. Now assume that (i) of 4.2 does not hold, so there is a quotient u_{n+1}/v_{n+1} , $(u_{n+1}, v_{n+1}) \notin \pi$ such that

 $c_{i+1}/c_i \to u_{n+1}/v_{n+1}$ and also $(u_{n+1}, v_{n+1}) \in (\theta_1 \land \ldots \land \theta_n)$ and the condition (ii) holds. Two cases can occur:

I. there exists $j \in \{1, ..., n\}$ such that the conditions $c_{i+1}/c_i \to u/v$ and $(u, v) \in (\theta_1 \land ... \land (\theta_j * \pi) \land ... \land \theta_n)$ imply $(u, v) \in \pi$. By Lemma 2.2 we get $(c_{i+1}, c_i) \in ((\theta_1 \land ... \land \theta_j * \pi \land ... \land \theta_n) * \pi).$

II. for every $j \in \{1, \ldots, n\}$ there exists a nontrivial quotient u_j/v_j such that $c_{i+1}/c_i \to u_j/v_j$ and $(u_j, v_j) \in (\theta_1 \land \ldots \land (\theta_j * \pi) \land \ldots \land \theta_n)$ with $(u_j, v_j) \notin \pi$. As L is $(\pi - n)$ -weakly modular lattice, (i) or (ii) from the Definition 4.1 holds for the quotients $c_{i+1}/c_i, u_j/v_j, j = 1, \ldots, n+1$. If the condition (i) holds, then there exist $i, j \in \{1, \ldots, n+1\}, i < j$ and a quotient u/v such that $u_i/v_i \to u/v, u_j/v_j \to u/v$ with $(u, v) \notin \pi$. But then $(u, v) \in (\theta_i * \pi)$ and $(u, v) \in \theta_i$ whence $(u, v) \in \pi$, a contradiction. Now let the condition (ii) of 4.1 hold. Hence for every $j \in \{1, \ldots, n+1\}$ there exists a proper subquotient $r_j/s_j \subset c_{i+1}/c_i, (r_j, s_j) \notin \pi$ and $(r_j, c_{i+1}) \notin \pi$ or $(s_j, c_i) \notin \pi$, and a quotient z_j/t_j such that $r_j/s_j \to z_j/t_j, u_j/v_j \to z_j/t_j$ and $(z_j, t_j) \notin \pi$. Thus for all $j = 1, \ldots, n$ we get $(z, t) \notin \pi$ with $z_j/t_j \to z/t$ and $(z, t) \in \theta_j$. Since $(z_j, t_j) \in (\theta_j * \pi)$, we get $(z, t) \in (\theta_j \land (\theta_j * \pi))$, so $(z, t) \in \pi$, a contradiction. Therefore the case II is impossible.

So for every $i \in \{1, \ldots, m-1\}$

$$(c_{i+1}, c_i) \in ((\theta_1 \wedge \ldots \wedge \theta_n) * \pi)$$
 or

 $(c_{i+1}, c_i) \in ((\theta_1 \wedge \ldots \wedge \theta_j * \pi \wedge \ldots \wedge \theta_n) * \pi)$ for some $j \in \{1, \ldots, n\}$, which yields

 $(a,b) \in ((\theta_1 \land \ldots \land \theta_n) \ast \pi) \lor ((\theta_1 \ast \pi \land \ldots \land \theta_n) \ast \pi) \lor \ldots \lor ((\theta_1 \land \ldots \land \theta_n \ast \pi) \ast \pi),$ so the lattice *L* satisfies the identity (L'_n) .)

As corollaries we obtain the following results.

Corollary 4.4. ([6], Theorem 1) Let L be a lattice and $n \ge 1$. Con L is (L_n) -lattice if and only if the following conditions hold:

- (i) L is (Δn) -weakly modular and
- (ii) every n-tuple $\theta_1, \ldots, \theta_n$ from Con L is (Δn) -separable.

Corollary 4.5. ([7], Corollary 3) Let L be a semi-discrete lattice and $n \ge 1$. Then Con L is a relative (L_n) -lattice if and only if for any prime quotients p, q_1, \ldots, q_{n+1} of L the relations $p \to q_k$, $k = 1, \ldots, n+1$ imply $q_i \to q_j$ or $q_j \to q_i$ for some $i, j \in \{1, \ldots, n+1\}, i \neq j$.

5. CONCLUSION

The presented work is related to the problems III.5 and III.6 of G. Grätzer's monograph [2] which ask for a characterization of lattices with Stone and (L_n) congruence lattices for arbitrary $n \ge 1$. We present a description of arbitrary
lattices whose congruence lattices considered as Heyting algebras are relative
Stone (Section 3) and relative (L_n) -lattices for arbitrary $n \ge 1$ (Section 4).

We use the method of description in terms of weak projectivity of quotients introduced by G. Grätzer and E. T. Schmidt [3], and later developed by T. Katriňák and M. Haviar in [8], [4], [7], [6]. However, our method is slightly alternative to the ones presented before as it considers the congruence lattices of lattices as Heyting algebras and uses entirely the identity (L'_n) in terms of relative pseudocomplement. We present self-contained proofs for the characterizations of lattices with relative (L_n) - and relative Stone congruence lattices. As corollaries we obtain descriptions of lattices with Stone and (L_n) congruence lattices, as well as descriptions of semi-lattices with relative Stone and relative (L_n) -congruence lattices for arbitrary $n \geq 1$.

References

- P. Crawley, Lattices whose congruence lattices form a Boolean algebra, *Pacif. J. Math.*, 10 (1960), 787–795.
- 2. G. Grätzer, General Lattice Theory, Birkhäuser Verlag, Basel 1978.
- G. Grätzer and E. T. Schmidt, Ideals and congruence relations in lattices, Acta Math. Acad. Sci. Hungar., 9 (1958), 137–175.
- M. Haviar and T. Katriňák, Lattices whose congruence lattices is relative Stone, Acta Sci. Math., (Szeged) 51 (1987), 81–91.
- 5. M. Haviar, Congruence lattices of lattices, Diploma thesis, Comenius University in Bratislava, 1988.
- M. Haviar, Lattices whose congruence lattices satisfy Lee's identities, *Demonstratio Math.*, 24 (1991), 247–261.
- M. Haviar and T. Katriňák, Semilattices with (L_n)-congruence lattices, Contribution to General Algebra 7, (1991), 189–195.
- 8. T. Katriňák, Notes on Stone lattices II, Mat. časop., 17 (1967), 20-37. (Russian)
- T. Katriňák and S. El-Assar, Algebras with Boolean and Stonean congruence lattices, Acta Math. Hungar., 48 (1986), 301–316.
- K. B. Lee, Equational classes of distributive psuedocomplemented lattices, Can. J. Math, 22 (1970), 881–891.
- T. Tanaka, Canonical subdirect factorization of lattice, J. Sci. Hiroshima Univ., 16 (1952), 239–246.