Univerzita Karlova v Praze
Matematicko-fyzikalni fakulta

SVOC

Vitézslav Kala
Jednoduché polookruhy

Katedra algebry

Vedouci prace: Prof. RNDr. Tomas Kepka, DrSc.

2009



Dékuji svému vedoucimu profesoru Kepkovi za zajimavé téma prace. Dale dékuji
Jakubu Oprsalovi za jeho cennou pomoc s upravou diplomové prace v systému
AMS-TEX. Béhem psani prace jsem byl podporovany Grantovou agenturou Uni-
verzity Karlovy, grant ¢islo 8648/2008.



Contents

Introduction
Chapter I. Basic definitions

Chapter II. Finitely generated ideal-simple commutative semirings

1. Preliminaries. . . . . . . . . . . . e

2. Preliminaries continued . . . . . . . . . ... oo
3. Semifields . . . . ...
4. Semifields continued . . . . . . . . ... e
D, SUMMATY . . . . . e e e e e e e

Chapter III. Parasemifields

1. Preliminaries . . . . . . . . . . . L
2. Parasemifields — introduction . . . . . . . .. ..o
3. The relations pug, vs, ns, and ps . . . . . . . ..
4. More results on parasemifields . . . . . . ... ... ... ... ... ..

Conclusion

References



Nazev prace: Jednoduché polookruhy

Autor: Vitézslav Kala

Katedra (tstav): Katedra algebry

Vedouci prace: Prof. RNDr. Tomas Kepka, DrSc.

E-mail vedouciho: kepka@karlin.mff.cuni.cz

Abstrakt: Znamé tvrzeni tika, ze pokud je komutativni téleso konec¢né gene-
rované jako okruh, je konecné. Tato prace je vénovana zobecnéni tohoto tvrzeni
— problému, jestli je kazdy konecné generovany idealové jednoduchy komutativni
polookruh aditivné idempotentni nebo kone¢ny. Pomoci charakterizace idealové
jednoduchych polookruhii dokazeme, ze tato otazka je ekvivalentni otézce, zda
je kazdé komutativni parapolotéleso (polookruh, jehoz multiplikativni pologrupa
je grupou), které je konecné generované jako polookruh, aditivné idempotentni.
V préci odvodime fadu uzitec¢nych vlastnosti takovychto parapolotéles a vyuzijeme
jich k vyfteSeni problému v jednogenerovaném piipadé. Na zavér uvedeme, jak je
mozné vyuzit ziskanych poznatki o parapolotélesech k vyreseni dvougenerovaného
piipadu pomoci zkoumani podpologrup N{°.

Klic¢ova slova: polookruh, parapolotéleso, idedlové jednoduchy, konecné genero-
vany, aditivné idempotentni

Title: Simple Semirings

Author: Vitézslav Kala

Department: Department of Algebra

Supervisor: Prof. RNDr. Tomas Kepka, DrSc.

Supervisor’s e-mail address: kepka@karlin.mff.cuni.cz

Abstract: A well-known statement says that if a commutative field is finitely
generated as a ring, then it is finite. This thesis studies a generalization of this
statement — problem, whether every finitely generated ideal-simple commutative
semiring is additively idempotent or finite. Using the characterization of ideal-
simple semirings we prove that this question is equivalent to the question, whether
every commutative parasemifield (i.e., a semiring whose multiplicative semigroup
is a group), which is finitely generated as a semiring, is additively idempotent. In
the thesis we deduce various useful properties of such parasemifields and use them
to solve the problem in the one-generated case. Finally, we mention a way of using
obtained properties of parasemifields for the solution of the two-generated case via
the study of subsemigroups of Ni'.

Keywords: semiring, parasemifield, ideal-simple, finitely generated, additively
idempotent



Introduction

A classical fact states that a (commutative) field is finite provided that it is
finitely generated as a ring. Now, a ring is finitely generated if and only if it is
finitely generated as a semiring; a ring is ideal-simple if and only if it is congruence-
simple. Of course, simple commutative rings are just fields and zero-multiplication
rings of finite prime order. Consequently, every finitely generated simple commu-
tative ring is finite.

On the other hand, setting a ® b = min(a,b) and a ®b =a + b for all a,b € Z,
we get an infinite commutative semiring that is both ideal- and congruence-simple
and that is two-generated. This semiring is additively idempotent and it is known
that every infinite finitely generated congruence-simple commutative semiring is
additively idempotent. However, it seems to be an open problem whether this
remains true in the ideal-simple case. It was probably first formulated in [1, 14.6].

The thesis is concerned with the study of this problem. In Chapter I we collect
standard definitions (mostly related to semirings) which are used throughout the
text.

In Chapter II we study ideal-simple semirings. Using the characterization of
these semirings, we reduce the question to a special case of semirings — those whose
multiplicative semigroups are groups (such semirings are called parasemifields). We
show that the following two statements are equivalent:

(a) Every infinite finitely generated ideal-simple commutative semiring is addi-
tively idempotent.

(b) Every (commutative) parasemifield that is finitely generated as a semiring is
additively idempotent.

The Chapter II consists of original results published in the article [3].

In Chapter III we study parasemifields, especially those that are finitely gener-
ated as semirings. We solve the problem for one-generated parasemifields (in fact,
there are no such parasemifields). This chapter consists of original results from the
article [5], which was submitted for publication.

In Conclusion we mention some other results related to the problem and suggest
a possible direction of further research which might eventually lead to a complete
solution.



CHAPTER I

Basic definitions

Definition. A semiring is a non-empty set S supplied with two associative op-
erations (addition and multiplication) where the addition is commutative and the
multication distributes over the addition from both sides. l.e., for all z,y,z € S
holds

Hz+(y+z)=(z+y) +z

(i) z(yz) = (zy)2;

(iii) s+ y =y + ;

(iv) x(y+ 2) =2y + xz and (z +y)z = 22z + yz.

A semiring is a ring if the addition defines an abelian group, i.e., if further:

(v) there exists 0 € S such that x + 0 = z for all z € S;

(vi) for all x € S there exists —x € S such that  + (—z) = 0.

Definition. A semiring S is commutative if for all x,y € S holds zy = yz.

Definition. A non-trivial semiring S is a parasemifield if the multiplication defines
a non-trivial group, i.e.

(i) there exists 1 € S such that 21 = x = 1z for all x € S

(ii) for all z € S there exists 7! € S such that zz7! =1=z"1z.

Definition. A non-trivial semiring S is a semifield if

(i) there exists an element w € S such that w is multiplicatively absorbing (i.e.
Sw=wS = w);

(ii) the set S\{w} is a subgroup of the multiplicative semigroup of S (i.e., there
exists 1 € S\{w} such that x1 = x = 1z for all x € S\{w}; for all z € S\{w} there
exists 71 € S\{w} such that xz71 =1 =2"12).

Definition. Let S be a semiring. A non-empty subset T" of S is a subsemiring of
S if it is a semiring (in other words, T is closed under addition and multiplication).
Similarly we define a subparasemifield and a subsemifield.

Definition. Let S be a semiring. A non-empty subset I of S is an ideal if (I +
IHUSIUISCI,ie., forall a,b e I,s €S holds

(i) a+be I;

(ii) sa € I, as € I.

The semiring is called ideal-simple if S is non-trivial and I = S whenever I is
an ideal containing at least two elements.

Definition. Let S be a semiring. A relation p C S x S is an equivalence if it is

(i) reflexive ((x,x) € p for all z € S);

(ii) symmetric (if (z,y) € p for z,y € S then (y,x) € p);

(iii) transitive (if (z,y), (y,2) € p for z,y,z € S then (z,z) € p).

An equivalence on S is a congruence if for all x,y,z € S such that (z,y) € p
holds

(iv) (z+ 2,y + 2) € p;

(v) (z2,y2) € p, (22, 2y) € p.

A semiring S is called congruence-simple if there are just two congruences on S.



Definition. Let S be a semiring. A relation p C S x S is a quasiordering if it is
reflexive and transitive.

A quasiordering on S is an ordering if it is antisymmetric, i.e., if (z,y), (y,z) € p
for x,y € S then x = y.

A quasiordering on S is stable if for all z,y,z € S such that (x,y) € p holds
(z+ 2,y +2) € p and (w2,yz) € p, (22, 2y) € p.

Definition. A semiring S is called additively idempotent if for all x € S holds
x + x = x, and multiplicatively idempotent if for all x € S holds xz = =.

Definition. A semiring S is called additively cancellative if for all z,y, z € S such
that x +vy = =+ z holds y = z, and multiplicatively cancellative if for all x,y,z € S
such that xy = zz or yxr = zz holds y = z.

Definition. A semiring S is called additively constant if there exists x € S such
that for all y, z € S holds y + z = z, multiplicatively constant if there exists z € S
such that for all y, z € S holds yz = .

Definition. A semiring S is called semisubtractible if for all x,y € S there exists
ze€Ssuchthat r=y+zory=2x+=z.

Definition. Let S be a semiring. An element w € S is called additively neutral if
for all x € S holds =z + w = z. An element w € S is called multiplicatively neutral
if for all z € S holds zw = x = wx.

Definition. Let S be a semiring. An element w € S is called additively absorbing
if for all x € S holds z + w = w. An element w € S is called multiplicatively
absorbing if for all x € S holds zw = w = wx.

Definition. Let S be a semiring. The semiring is generated by a set A C S if
whenever 7' C S is a semiring containing A, we have T' = S. In this case we also
say that A generates S.

Let k£ be a non-negative integer. A semiring S is said to be k-generated if there is
aset A, |A| = k, which generates S, and there is no set B, |B| < k, which generates
S.

A semiring S is said to be finitely generated if it is k-generated for some non-
negative integer k.

Notation. We use the following (standard) notation:

N ... the set of all positive integers
Np ... the set of all non-negative integers
Z ... the set of all integers
Q ... the set of all rational numbers
Q™ ... the set of all positive rational numbers
& ... the set of all non-negative rational numbers
R ... the set of all real numbers
R* ... the set of all positive real numbers

RS’ ... the set of all non-negative real numbers



CHAPTER 11

Finitely generated ideal-simple commutative semirings

1. PRELIMINARIES
The following lemma is obvious.

1.1 Lemma. The following conditions are equivalent for a ring R:
(i) R is ideal-simple as a ring.
(ii) R is ideal-simple as a semiring.
(iii) R is congruence-simple as a ring.
(iv) R is congruence-simple as a semiring.

(And then R is called simple.)

Every two element semiring is both ideal- and congruence-simple and it is easy to
see there are exactly ten two element semirings (up to isomorphism). The following
eight of them are commutative:

S1 Sa
+]0 1 o o1 +]10 1 0 1
00 0 00 0 0[]0 0 0] 0 0
110 0 110 0 110 0 110 1
Sg S4
+]0 1 0 1 +]10 1 0 1
00 0 00 0 0] 0 0 01 1
110 1 110 0 110 1 11 1
Ss Se
+]0 1 0 1 +]10 1 0 1
00 0 00 1 0] 0 0 0] 0 0
110 1 111 1 110 1 110 1
Sy Ss
+]0 1 o o1 +]10 1 0 1
0/ 0 1 00 0 00 1 0] 0 0
111 0 110 0 111 0 110 1

Notice that S; and S, are additively constant, S3,S4,Ss and Sg are additively
idempotent and S; and Sg are rings. Moreover, S1,S3, S, and S; are multiplicatively
constant and So, S5, S¢ and Sg are multiplicatively idempotent.

The following lemma is easy to prove.

1.2 Lemma. Let S be a non-trivial semiring containing an element w such that
T = S\{w} is a subgroup of the multiplicative semigroup of S.

(i) If w is multiplicatively neutral (i.e., w = 1g), then T is a subsemiring of S.

(i) If w is multiplicatively absorbing but not additively absorbing, then w is
additively neutral (i.e., w = 0g) and either S is a division ring or T is a subsemiring
of S.

(iii) If |S| > 3 and w is neither multiplicatively neutral nor multiplicatively
absorbing then there exists v € T such that wx = vz and xw = zv for every x € S.



2. PRELIMINARIES CONTINUED

Only commutative semirings will be dealt with in the rest of the chapter, and
hence the word ’semiring’ will always mean a commutative semiring.

Clearly, each parasemifield is ideal-simple (in fact, ideal-free). Also, every semi-
field is ideal-simple.

We have the following basic classification of ideal-simple semirings (see e.g. [1,
11.2]):

2.1 Theorem. A semiring S is ideal-simple if and only if it is of at least (and
then just) one of the following five types:

(1) S~ 81783784;

(2) S is a zero-multiplication (i.e., xy = 0 for all x,y € S) ring of finite prime
order;

(3) S is a field;

(4) S is a proper semifield;

(5) S is a parasemifield.

2.2 Proposition. ([1, 14.3]) Every infinite finitely generated congruence-simple
semiring is additively idempotent.

2.3 Proposition. ([1, 14.5]) No infinite finitely generated ideal-simple semiring is
additively cancellative.

2.4 Example. (i) The parasemifield Q" xQ* (where Q denotes the field of rational
numbers) is ideal-simple but not congruence-simple.

(ii) Denote by W the set of real numbers of the form m — nv/2, where m,n are
non-negative integers and m+n > 1. Put a®b = min(a,b) and a©®b = a+b for all
a,b € W. Then W (&, ®) is an infinite finitely generated congruence-simple semiring
that is not ideal-simple. This semiring is additively idempotent and multiplicatively
cancellative.

3. SEMIFIELDS

In the following three lemmas, let S be a non-trivial semiring and let w € S be
such that T'= S\{w} is a subgroup of the multiplicative semigroup S(-).

3.1 Lemma. If lpw = w then Sw = w (i.e., w is multiplicatively absorbing) and
S is a semifield.

Proof. If aw = v # w for some a € T, then w = lpw = a taw = a v € T, a
contradiction. Consequently, Tw = w and it remains to show that ww = w.
Assume that ww = w € T. Then 1y = v 'u = v 'ww = ww = u according
to the preceding part of the proof, and therefore ww = 17 and a = alp = aww =
ww = 1p for every a € T. Thus we have shown that S = {w, 17} and that S has

the following multiplication table:

1

| w 1T
w 1r w
1T w ]-T

Therefore w(w + 17) = ww + wlp = 1p + w, a contradiction since wz # z for
every z € S.
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3.2 Lemma. Assume that 17w =z € T and ww € T'. Then:
(i) T is a subsemiring of S.
(ZZ) If |T’ =1 then S ~ 81783,84,87.
(iii) If |T'| > 2 then T is a parasemifield (and so T is infinite).
(iv) aw = az for every a € T.
(v) ww = zz.
(vi) Sw C T and T is an ideal of S.
(vii) If a € T then either w+a=z4+a €T orw+a=w and z+a = z.
(viii) If w +w € T then w4+ w = z + z.
(iz) If w4+ w = w then S is additively idempotent.

Proof. If a,b € T are such that a+b = w, then w = a+b = alp+bly = (a+b)1lp =
wly = z, a contradiction. Thus 7'+ T C T and T is a subsemiring of S. Further,
aw = alrw = az,a € T, and ww = wwly = wz = zz. The rest is easy. [

3.3 Lemma. Assume that 17w =z € T and ww = w. Then
(i) T is a subsemiring of S.
(Z’L) If |T| =1 then S ~ 82,85,86,88.
(i5i) If |T| > 2 then T is a parasemifield (and so T is infinite).
() z = 1p.
(v) wv =v for everyv € S (i.e., w=1g).
(vi) T is an ideal of S.
(vii) If a € T then either w+a=1r+a €T orw+a=w and 17 +a = 1p.
(viii) If w +w € T then w+ w = 1p + 1.
(iz) If w +w = w then S is additively idempotent.

Proof. Similar to that of 3.2. [J

3.4 Lemma. Let S be a non-trivial semiring and let wy,wqy € S be such that both
Ty = S\{w1} and Ty = S\{ws} are subgroups of the multiplicative semigroup S(-).
Then either wy = wy or |S| =2 and S ~ S5, S5, S¢, Ss.

Proof. Assume that wy; # wy. If |S| = 2 then S = {17,,11,}, and hence S is
multiplicatively idempotent. If |[S| > 3 then T3 N Ty # (. Now, w; € T and
there is a € T, such that wia € 11 NT5. Moreover, wiab = 17, for some b € T
and cw; = 1p, for some ¢ € 1. Then cly, = cwyab = 1p,ab = ab and 17,17, =
wicly, = wyab = 1p,. Similarly we get 17,17, = 17, and therefore 11y, = 17, = 1p
is a multiplicatively neutral element of S. Then every element from S has an
inverse, and so S is a group, a contradiction (see 3.1 and 3.2). O

3.5 Proposition. Let S be a non-trivial semiring and let w € S be such that the
set S\{w} is a subgroup of S(-). Then S is a semifield (i.e., Sw=w) in each of the
following cases:

(1) lpw = w;

(2) ww =w and lpw # 1p;

(3) S # S1,S7, S is not additively idempotent and Q7 is not isomorphic to a
subsemiring of S;

(4) S is finite, S # S1,S7 and S is not additively idempotent.

Proof. Combine 3.1, 3.2 and 3.3. [J
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4. SEMIFIELDS CONTINUED

4.1. Let T be a parasemifield. Then 0 ¢ T; let S =T U{0},z2+0=2=0+2x
and 0 = 0 = Ox for every x € S. In this way we get a semifield (containing 7" as
a semiring), which will be denoted X(7') in the sequel.

4.1.1 Lemma. (i) X(T) is additively idempotent (resp. additively cancellative) if
and only if T is such.

(ii) A subset M of X(T') generates X(T') as a semiring if and only if 0 € M and
M NT generates T as a semiring (then |M| > 2).

(i1i) X(T) is a finitely generated semiring if and only if T is such.

(iv) X(T') is not a one-generated semiring; it is a two-generated semiring if and
only if T is a one-generated semiring.

Proof. Easy to see. [J

4.2. Let A(+) be a non-trivial abelian group, o ¢ A, S = AU{o}, x+0=0=o0+z,
r€S;,a+a=aand a+b=o,a,bée A, a#b. Moreover, o =0 = ox, x € S.
In this way we get an additively idempotent semifield which will be denoted as
V(A())-

4.2.1 Lemma. (i) A subset M of V(A(-)) generates V(A(-)) as a semiring if and
only if M N A generates A(-) as a semigroup.

(ii) V(A(-)) is a finitely generated semiring if and only if A(-) is a finitely gen-
erated group.

(11i) V(A()) is a one-generated semiring if and only if A(-) is a one-generated
semigroup. This is equivalent to the fact that A(-) is a finite cyclic group.

(iv) V(A(-)) is generated by a two-element set containing the unit element if and
only if A(-) is a finite cyclic group (see (iii)).

Proof. Easy to see. [J

4.3. Let T be a parasemifield, o ¢ T, S =T U{o},x +0o=0+x =x0 =0x =0
for every x € S. In this way we get a semifield which will be denoted as U(T).

4.3.1 Lemma. (i) U(T) is additively idempotent if and only if T is such.

(ii) A subset M of U(T) generates U(T') as a semiring if and only if o € M and
M NT generates T as a semiring (then |M| > 2).

(i5i) U(T) is a finitely generated semiring if and only if T is such.

(iv) U(T) is not a one-generated semiring; it is a two-generated semiring if and
only if T is a one-generated semiring.

Proof. Easy to see. [J

4.4. Let T be a parasemifield and let the multiplicative group 7(-) be a proper
subgroup of an abelian group A(-), o ¢ A. Put S = AU {0} and define
a)r+o=o0=o0o+uz, €S,
b)a+b=o0,a,b€ A,a b ¢ T;
c)c+d= 1y +c *d)e(= (1r +d te)d),c,d € A,c™'d eT.
Moreover, put zo = 0 = ox,z € S. In this way we get a semifield which will be

denoted as W(T', A(+)).
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4.4.1 Lemma. (i) T is a subsemiring of W(T, A(-)).

(i) W(T, A(+)) is additively idempotent if and only if T is such.

(iii) A subset M of W(T, A(-)) generates it as a semiring if and only if M\{o}
generates S.

Proof. Easy to see. [J

4.4.2 Lemma. If the semiring W(T, A(-)) is generated by aq,...,am € A;m > 1,
then the factorgroup A(-)/T(-) is generated by the cosets a1 T, ..., a,T as a semi-
group.

klyj

Proof. Let a € A. Thena = by +---+b,,n > 1,b; = a4 ---alfnm’j,ki,j >0. If
bj_llbj2 ¢ T for some 1 < j; < jo < n, thenb;, +b;, = oand so a = o, a contradiction.
Thus bj_llbj2 € T, and so b; = cjby,c; € T. Then a = cby,c = c¢; + -+ + ¢, and

al = b1 T. The rest is clear. I

4.4.3 Lemma. Let ay,...,a, € A,m > 1, be such that the factorgroup A(-)/T(-)
is generated by the cosets a1T,...,a,,T as a semigroup. Denote by B the subsemi-
group of A(-) generated by the elements ay, ..., a,,. Then for every a € A there are
be B and c € T such that a = bc.

Proof. Obvious. [
4.4.4 Lemma. If W(T, A(-)) is a finitely generated semiring then T is also.

Proof. Let the semiring be generated by ai,...,a, € A,m > 1. Denote by B the
subsemigroup of A(-) generated by these elements. Then C = BB~'NT is a finitely
generated subgroup of T'(-), and hence the subsemiring T} of T" generated by C is
a finitely generated semiring. It remains to show that T = Tj.

Let a € T. Thena =0b;+---+by,,n > 1,b; € B,b; = cjbi,c; = bjbl_1 e C
(see the proof of 4.4.2), and therefore a = cby,c = ¢1 + -+ ¢, € T1. Of course,
bi=clac BNTCCCT and so a,by,...,b, €Ty. O

4.4.5 Lemma. W(T, A(-)) is a finitely generated semiring if and only if T is a
finitely generated semiring and A(-)/T(-) is a finitely generated group.

Proof. Combine 4.4.2, 4.4.3 and 4.4.4. J

4.4.6 Remark. Assume that W(T, A(-)) is generated by a single element s as a
semiring, denote 1w = lyw(r a(.)). We have s € A; B = {s, 52,83 ...} is the sub-
semigroup of A(-) generated by s and BB~! ={... 573,572 57! 1yw,s,s%,s3,...}
is the subgroup generated by s. Notice that s # 1.

(i) For every a € A there are m > 1 and 1 < k; < --- < ky,, such that a =
shrf gk fooopghm = gFip b= 1w+ sF2F 4. sk Since a # o, we have
sk2=Fk1 sFm=k1 ¢ T and so b € T. Moreover, if a € T then s*' = ab~! € T and
consequently s¥1, sk2 . skm € T

(ii) It follows from (i) that D = BN T # 0 and so D is a subsemigroup and
C = DD™! a subgroup of T(-). Consequently, there is n > 0 such that C =
{0,873 8720 57 1y, 8™, 827,837, L L

(iii) Denote by T; the subsemiring of T" generated by s~ and s™. It follows from
(i) and (ii) that 73 = T. Consequently, n > 1 and T is a two-generated semiring.

(iv) The factorgroup A(-)/T'(-) is generated by the coset sT" as a semigroup.
Thus A(-)/T(+) is a finite cyclic group.
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(v) Proceeding similarly as above, one can show that (iii) and (iv) remain true
if W(T, A(-)) is generated by lyw and s as a semiring.

4.5 Theorem. Let S be a semifield and let w € S be such that w s multiplicatively
absorbing and T = S\{w} is a subgroup of S(-). Then just one of the following
etght cases takes place:

(1) S ~ Sy (and w is bi-absorbing);

(2) S ~ S5 (and w is additively neutral);

(8) S ~S¢ (and w is bi-absorbing);

(4) T is a subparasemifield of S and S ~ X(T) (and w is additively neutral);

(5)|S| >3 and S ~V(T(-)) (and w is bi-absorbing and S is additively idempo-
tent);

(6) T is a subparasemifield of S and S ~U(T) (and w is bi-absorbing);

(7) Ty = {a € T|a+ 1r # w} is a subparasemifield of S, Th1 # T, and S ~
W(T1,T(-)) (and w is bi-absorbing);

(8) S is a field.

Proof. Easy (use 3.1, 3.2 and 3.3). O
5. SUMMARY

5.1 Summary. Combining 2.1, 4.5, 4.1.1 (i), (iii), 4.2, 4.3.1 (i), (iii), 4.4.1(ii) and
4.4.4, we conclude that the following two assertions are equivalent:

(a) Every infinite finitely generated ideal-simple semiring is additively idempo-
tent.

(b) Every parasemifield that is finitely generated as a semiring is additively idem-
potent.

5.2 Remark. Let F be a field. If F' is a finitely generated ring then F' is finite. If
F is finite then the multiplicative group F'\{0} is cyclic, and hence F' is generated
by one element as a semiring.

5.3 Remark. Let S be a one-generated ideal-simple semiring. Combining 2.1, 4.5,
4.1.1(iv), 4.2.1(iii), 4.3.1(iv), 4.4.6 and 5.2, we get that one of the following cases
takes place:

( ) S~ Sl) S?n 847
(2) S is a zero multiplication ring of finite prime order;
(3) S is a finite field;
(4) S ~ V(A(+)), where A(-) is a non-trivial finite cyclic group;
(5) S ~ W(T A(-)), where T is a two-generated parasemifield and A(-)/7'(-) is a
(non-trivial) finite cyclic group;

(6) S is a parasemifield.
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CHAPTER 111

Parasemifields

1. PRELIMINARIES

Define a relation ps on S by (a,b) € pg if and only if b = a + z for some
z € SU{0}. Then ug is a stable quasiordering of the semiring S and vg = ker ug
is a congruence of S. The following two lemmas are obvious.

1.1 Lemma. The following conditions are equivalent:
(Z) Hs = S xS,
(Z’L) Vg = S X S,
(iii) S is a ring (i.e., S(+) is an abelian group).

1.2 Lemma. pug is an ordering of S if and only if vs = idg.

1.3 Lemma. PutT = S/vg. Then
(i) (a,b) € us if and only if (a/vs,b/vs) € pur.
(it) vr = idr and pr = ps/vs.
(#5i) pr is a stable ordering of the semiring T'.

Proof. Denote by 7 the natural projection of S onto T'. If (a,b) € ug then b = a+z,
z € SU{0}, n(b) = m(a) + 7(2) and (7(a),w (b)) € ur. Conversely, if (7(a), (b)) €
pr then w(a + z) = 7w(b) for some z € S U {0}, and hence (a + z,b) € vg and
a+z+wv=>b,ve SU{0}. Then, of course, (a,b) € us. The rest is clear. [

Now, define a relation ng on S by (a,b) € ng if and only if there exist m,n € N
such that (a, mb) € pug and (b,na) € pg.

1.4 Lemma. (a,b) € ng if and only if there exist ¢,d € SU{0} and k € Ny such
that a + ¢ = 2kb and b+ d = 2%a.

Proof. Easy to check. [J

1.5 Lemma. (i) ns is a congruence of S, the factor-semiring S/ns is additively
tdempotent and vs C ng.

(ii) ns is the smallest congruence of S such that the corresponding factor is
additively idempotent.

Proof. (i) Easy to check.

(ii) Let r be a congruence of S such that S/r is additively idempotent. If (a,b) €
ns then a + u = mb, b + v = na for some u,v € S U {0}, m,n € N, and so
(a +u,b) € rand (b+v,a) € r. Moreover, (a +u,a+b) € r and (b+v,b+a) € r.
Thus (na,mb) € r, which implies (a,b) € r. O

1.6 Corollary. (i) ns =idg if and only if S is additively idempotent.

(i) ns = vs if and only if for every a € S there exists z € S U {0} such that
2a +z = a.

(11i) The set {a € S|2a = a} is either empty or an ideal of S.
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1.7 Lemma. Let A(+) be a commutative semigroup such that the mapping  — 2z
is an ingective transformation (in fact, an endomorphism) of A. If b,c € A and
m € Ng are such that b+ 2™b = ¢+ 2™b, then b+ b = ¢+ b.

Proof. Assume that m is the smallest possible. If m > 1 then 2(b + 2™~ 1b) =
b+b+2"b=b+c+2"b=c+b+2mb=c+c+2"b = 2(c+ 2™ 1b), and so
b+2m"1h = c+ 2™~ 1, a contradiction. Thus m =0and b+b=c+b. O

1.8 Lemma. If A is a block of ng then A is a subsemigroup of S(+). If, more-
over, the transformation x — 2x, x € A, is injective, then A(+) is a cancellative
Semigroup.

Proof. Let a+b=a+c, a,b,c € A. We have (a,b) € ng, and so there is d € SU{0}
and m € Ny such that a+d = 2"b (see 1.4). Then b+2"b=b+a+d=c+a+d =
c+2™b. Hence b+ b=>b+c by 1.7 and ¢+ ¢ = ¢+ b symmetrically. Thus 2b = 2¢
and b=c. [

1.9 Remark. We have ng = S x S if and only if S is additively archimedean.
When S is such and x — 2z, x € S, is injective, then S is additively cancellative.

Define a relation pg on S by (a,b) € pg if and only if a + z = b + z for some
z € SU{0}.

1.10 Lemma. (i) ps is a congruence of S and the factor-semiring is additively
cancellative.

(ii) ps is the smallest congruence of S such that the factor-semiring is additively
cancellative.

Proof. Easy to check. [J
1.11 Corollary. ps =idg if and only if S is additively cancellative.

1.12 Lemma. (i) ps =5 x S if and only if (a,2a) € ps for alla € S.
(ii) If S is additively idempotent, then ps = S x S.

Proof. (i) The direct implication is trivial. Conversely, if (a,2a) € pg for all a € S,
then (a + b,2a +b) € pg, a,b € S, and (a + b,2b + a) € pg, symmetrically. Thus
(a+ (a+0b),b+ (a+10)) € ps, and so (a,b) € pgs.

(ii) Clearly, a + (a +b) = b+ (a +b) for all a,b € S. O

1.13 Lemma. Ifa+b=0>5 fora,b € S, then (a,2a) € ps.
Proof. We have 2a + b = a + b, and hence (a,2a) € ps. O

1.14 Lemma. Assume that 1g € S. Then the following conditions are equivalent:
(Z) pPs = S xS.
(ZZ) (15,25) € ps.
(i1i) 1g + ¢ = ¢ for some c € S.
(iv) For every a € S there exists b € S such that a + b =b.
(v) (a,2a) € ps for alla € S.

Proof. (i)=(ii) trivially, (iv)=-(v) by 1.13, and (v)=-(i) by 1.12.

(ii)=-(iii): We have 1g +d = 25 + d for some d € S. Then 1g + ¢ = ¢, where
c=1g+ d.

(iii)=(iv): We have a + ac = ac. O
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1.15 Lemma. Assume that Og € S. Then the following conditions are equivalent:
(Z) pPs — S xS.
(ii) (a,2a) € ps for alla € S.
(111) (a,0g) € ps for alla € S.
(iv) For every a € S there exists b € S such that a +b =b.

Proof. Use 1.12. [

1.16 Lemma. (i) Let I be an ideal of a semiring S such that I has a unit element
1;. If S is generated by a set M, then I (as a semiring) is generated by the set
M1;y. In particular, if S is finitely generated, then I is so.

(ii) Let S be finitely generated semiring with a subsemiring Q = Q%. Then S-1¢
is a finitely generated semiring with unit 1o containing a copy of QV.

Proof. Easy to see. [J
1.17 Lemma. The semiring Q" of positive rational numbers is congruence-simple.

Proof. Let r be a congruence of Q*, r # id. Then there are positive integers m > n
such that (m,n) € r. Choose k € N such that m* > 2n*. We have (m*,n*) € r,
and so (mF —n¥ 2(mF —n*)) = (n* + (m* —2n*), m* + (m* — 2n*)) € r. Therefore
(1,2) = ((m* —nF)(m* —nF)=12(m* — nF)(m* —n*)~1) € r. Thus (s,t) € r for
all s,t € QT,and sor =QFt xQT. O

1.18 Proposition. Let T be a finitely generated semiring such that Q ~ Q% is a
subsemiring of T'. Then T is not additively cancellative.

Proof. Assume that T is additively cancellative and denote by R the Dorroh ex-
tension of the difference ring of T'. R is a finitely generated ring, has a unit element
and the field Q of rational numbers is isomorphic to a subring of R containing Q).

Let I be a maximal ideal of R. Since Q is a simple ring, we get either ) C [
or QNI =0. If QNI = 0 then Q is isomorphic to a subring of R/I. But R/I
is a finitely generated field, hence finite, a contradiction. Thus ) C I. Hence
1o € Q S Nrerran(ry I = J(R), a contradiction. [J

1.19 Lemma. Let S be a finitely generated semiring with unit containing a sub-
semiring Q ~ QV such that 1g € Q. Then ps =S x S.

Proof. First, put T'= S/ps. Then T is a finitely generated additively cancellative
semiring (and T is trivial if and only if pg = S x S). If ps | Q = idg then Q7 is
isomorphic to a subsemiring of 7', which is impossible by 1.18. Thus pg [ @ # idg.

Q ~ QT is congruence-simple by 1.17, and so ps | @ = Q x Q and Q is contained
in a block of pg. Consequently, 1/pg is an additively idempotent element of 7" and,
since T is additively cancellative, it follows easily that 1/pg is additively neutral
and multiplicatively absorbing. Thus a/ps = (a-1)/ps = a/ps - 1/ps = 1/pg for
every a € S and pg =S5 x 5. J
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2. PARASEMIFIELDS — INTRODUCTION

2.1 Lemma. Let S be a parasemifield. Then:
(i) 0s & S and 1g € S.
(ii) S is infinite.
(iii) S is ideal-free (i.e., S is the only ideal of S).
Proof. The automorphism group of S(+) is transitive and the rest is clear. [J

2.2 Lemma. Let S be a parasemifield.

(i) S is additively idempotent if and only if 1g = 2g.

(i) If S is not additively idempotent and P denotes the smallest subparasemifield
of S (i.e., the subparasemifield generated by 1s), then P ~ Q™.

Proof. (i) Easy to see.

(ii) P is a homomorphic image of Q%, i.e., P ~ Q™ /r for a congruence r of Q.
But QT is congruence-simple by 1.17. If r = Q7 x Q7 then P is trivial and S is
additively idempotent. Thus r = id and P ~ Q™. [J

2.3 Remark. (i) Parasemifields together with trivial semirings form an equational
class of universal algebras (two binary, one unary and one nullary operation).

(ii) If k > 2 is a cardinal number then the parasemifield (Q )" is not congruence-
simple.

2.4 Lemma. A semiring S is a parasemifield if and only if S is ideal-free.
Proof. If S is ideal-free then Sa = S for every a € S, and hence S(-) is a group. [J

2.5 Remark. Let S be a parasemifield. Then S(x,-) is again a parasemifield,
where a b = (a=! +b71)7! for all a,b € S (the adjoint parasemifield).
The mapping a — a~! is an isomorphism of S(+,-) onto S(x,-) and vice versa.

2.6 Remark. ([7]) There exists a one-to-one correspondence between additively
idempotent parasemifields and lattice-ordered abelian groups. If S is an additively
idempotent parasemifield, a Ab=a+band aVb= (a=t+b"1)"! (= a=b), then
S(-,A,V) is a lattice-ordered group. Conversely, if S(-,A,V) is a lattice-ordered
group and a + b = a A b, then S(+,-) is an additively idempotent parasemifield.

2.7 Remark. Let S be a non-trivial multiplicatively cancellative semiring. Then
there exists a parasemifield P (the parasemifield of fractions) such that P =
{ab=1|a,b € S}. Moreover, P is additively idempotent (cancellative, resp.) if
and only if S is so.

2.8 Lemma. Let S be a parasemifield. Then the multiplicative group S(-) is tor-
stonfree.

Proof. Let a € S and m € N be such that @™ = 1. Then a(l +a+---+a™ 1) =
a+a?+---+a™ ! +1, and therefore a = 1. O
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3. THE RELATIONS ug, Vs, s, AND pg
Throughout this section, let S be a parasemifield.
3.1 Lemma. Ifa,bc S, k € N are such that (a*,b*) € ug, then (a,b) € us.

Proof. We have b* = a* + » for some z € SU{0}. Let z = a*" 1 +a* 20+ .- +
ab®=2 + b1 Then bz = a* b0+ a* 202 + - - + a1 + 0% = o 1b + o202 +
ot abfF '+ af +z2=ar+ 2 and so b =a+ zx~! and (a,b) € ps. O

3.2 Lemma. Letr € QT and k € N be such that r**1 < k+1. Then (rg,a+a" %) €
s for everya € S.

Proof. We have (a + a ¥)F1 = a1 4 (k + 1)a*a % + -+ = (k + 1) + 2 for some
z € S, thus ((k+ 1)s, (a +a=*)**1) € pug. Further (r& (k 4+ 1)1s) € pg, and so
(rEtt (a+a=*)**1) € pg and (rs,a+a=*) € pg by 3.1. O

3.3 Corollary. (ls,a+a"%) € us for alla € S and k € N.
3.4 Lemma. For alln € N,

1/(n+1)m
lim <("+1)m) ntl 1men)

nm n

m—00

Proof. Put a,, = ((”:an)m). Then lim,, o —aa; L = lim,, oo (%;1172;”,(:?{)1,)('(%?;;1;,

n+1
= limy, oo ((n(:gimgji)ﬁi({;a)ﬁil) — (m;z . Using the well-known Cauchy
criterion we get lim,,, al/™ — I (n+§21n+1. -

3.5 Remark. Denote %t . nl/("+1) = f(n). Then f(1) =2, f(n) > f(n+1) and

lim,, o f(n) =1. Also f(n) > (("I;)m)l/(nﬂ)m for all m € N. (Use the binomial

formula for f(n)tm = (pt/(n+1) 4 p=n/(n+1))(n+1)m  The rest is easy.)

3.6 Lemma. ((f(n)—r)s,a+a ™) € ug forallneN,aec S, reQt, r< f(n).
Proof. Denote f(n) —r = x. There is a positive integer m such that z("tV™ <
((":il)m) by 3.4 and 3.5. Using the binomial formula for (a+a~")"+)™ we see that
(((”:il)m) ls, (a+ a_”)(”+1)m) € us. Consequently, (x(snﬂ)m, (a4 a=m)H0my ¢
ws and therefore (xg,a 4+ a™™) € pug by 3.1. O

3.7 Lemma. If (a,b) € us then (b™',a7t) € ug.

Proof. Ifa+z=>bthena! =b"! + z(ab)~L. O

3.8 Lemma. (i) (a(a"™ +1g)71,15) € pg for everya € S, n € N.

(i) (a(a™ + 15)7% (f(n) — r)g') € us for everyn € N, a € S, r € QF,
r < f(n).

(iii) (a(a® + 1)L, n(2n — 1)g') € ps for alla € S, n € N.

Proof. Use 3.3, 3.5, 3.6 and 3.7.
3.9 Lemma. vg # 5 x S.
Proof. If vg =S x S then S is a ring by 1.1(iii), a contradiction with 0 ¢ S. [
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3.10 Lemma. The following conditions are equivalent for a,b € S:
(i) (a,b) € ns.
(ii) (a='b,1s) € ns.
(iii) There exist m,n € N such that (mg',a~'b) € pus and (a='b,ng') € us.
(iv) There exist r,s € Q*, r < s, such that (rs,a™1b) € ps and (a=1b,s5) € us.
(v) There exists k € N, such that (25", a='b) € us and (a='b,2%) € us.

Proof. Easy to check. [

3.11 Proposition. (i) ns = ids if and only if S is additively idempotent.

(i) ns = Sx.S if and only if S is additively archimedean (and then S is additively
cancellative).

(11i) If A is a block of ng, then A(+) is a cancellative subsemigroup of S(+).

(iv) (a,b) € ng if and only if a=b € P = {c|(c,15) € ns}.

(v) Either P = {1s} (and then S is additively idempotent) or P is an additively
cancellative archimedean subparasemifield of S.

Proof. For (i),(ii),(iii) and (iv) see 1.6, 1.8, 1.9 and 3.10.

(v) To show that P is additively archimedean, it is enough to prove that (¢, 1g) €
np for every ¢ € P. Let c+d = nlg and 1g + ¢ = mc, where ¢ € P, d,e € S,
n,m€N. Putd =d+1gand e =e+e¢c. Thend +c=(n+1)lg, ls+d=4d,
¢+ (ls+(m+1)d) = (m+1)nlg and 1g+ (m+1)e = me’, hence d’, e’ € P. Since
c+d =(n+1)lgand 1g + €' = (m + 1)c, we get (¢,1s) € np.

The rest follows from 1.5(i) and 1.8. O

3.12 Lemma. ns = vg if and only if (25,15) € ps.
Proof. Easy to see. [J

3.13 Lemma. The following conditions are equivalent:
(i) ps =S x 8.
(i) a+b=a for some a,b e S.
(ZZZ) (15,25) € ps.
(iv) c = c+ 1g for some c € S.
(v) 1s = 1g +d for some d € S.
(vi) For all x € S there exists y € S such that © +y = x.

Proof. Easy (use 1.14). O

3.14 Proposition. (i) If S is finitely generated as a semiring, then S is not ad-
ditively cancellative and S satisfies the equivalent conditions of 3.13.

(ii) The additive semigroup S(+) is not finitely generated.

(1) If the multiplicative group S(-) has finite (Prifer) rank, then S is additively
tdempotent.

Proof. (i) Use 1.12(ii), 2.2(ii), 1.18 and 1.19.

(ii) Suppose S(+) is generated by {ai,...,a,}. If S is additively idempotent
then S is finite, a contradiction with 2.1. Hence pg = S xS by 2.2 and 1.19. There
are b; € S,1=1,...,n such that a; + b; = b;, by 1.14. Thus ka; + b; = b; for every
ke NU{0} andi=1,...,n. Put o =) ,b;. Then for every z = > . kja; € 5,
k; € NU{0}, we get x + 0 = 0. Hence 0o+ 0 = o, a contradiction with QT C S.

(iii) The multiplicative group Q7 (+) is a free abelian group of infinite rank. [J
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4. MORE RESULTS ON PARASEMIFIELDS

In this section, let S be a parasemifield that is not additively idempotent. Ac-
cording to 2.2(ii), the prime subparasemifield of S is a copy of QT and (without
loss of generality) we can assume that it is equal to Q.

Put P = {a € S|(a,1) € ns}, Q@ = {a € S|(a,r) € pg for some r € QT},
R = {a € S|(r,a) € ug for some r € Q" }. According to 3.11(v), P is additively
cancellative archimedean subparasemifield of S.

4.1 Lemma. The following conditions are equivalent for a € S':
(i) a € P.
(ii) a=1 € P.
(ii) There exist m,n € N such that (mg',a) € us and (a,ng') € ps.
(v) There exist r,s € QT, r < s, such that (rs,a) € ps and (a,ss) € us.
(v) There exists k € N, such that (25", a) € ps and (a,2%) € pg.
(vi) a € QN R.

Proof. See 3.10. [J
4.2 Lemma. Let a,b,c € S. If (a,b) € us, (b,c) € us and a,c € P, then b € P.
Proof. Use 4.1. [

4.3 Proposition. (i) Both Q and R are subsemirings of S.
(ii) QN R = P.
(iii) a € Q if and only if a= ! € R (i.e., R=Q71).

Proof. Easy (use 4.1). O

4.4 Lemma. If ai,...,a,, € S, m € N are such that a1 + --- 4+ a,, € Q, then
ai,...,am € Q.

Proof. Obvious. [

4.5 Lemma. R+ S C R (i.e., R is an ideal of S(+)).

Proof. Obvious. U

4.6 Lemma. Leta € S, k € N. Then
(i) a € Q if and only if a* € Q.
(ii) a € R if and only if a* € R.
(iii) a € P if and only if a* € P.

Proof. (i) If a* € Q then (a*,r) € pg for some r € QT. We have r < s* for some
s € Qt and (a*,s*) € pug. Then (a,s) € ug by 3.1, and so a € Q.

(ii) Similar to (i).

(iii) Combine (i), (ii) and 4.3(ii). O

Let a € S. Denote K, the subsemiring of S generated by Q* U {a}. Clearly,
K, is the set of elements of the form ro + ria + rea® + --- + r,a™, m > 0,1; €

Q—FU{O}?ZH#O'
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4.7 Lemma. Leta € S,k e N,g e K,. Then:
(i) a+1,(a+1)at, (a*+1)a t,a+a*€R.
(ii) (a+1)"Ya(a+ 1) a(a® + 1) a* (@ +1)71 € Q.
(iii) g +a~ ! € R.
(iv) a(ag+1)"t € Q.

Proof. (i) We have (1,a + 1) € us and (1,a ™t +1) = (1,(a + 1)a™ ') € us. Thus
a+1,(a+1)a"! € R. Further, a ' +(a" 1)~V = (¢*+1)a' € Randa+a % € R
by 3.3.

(iil) Let g = >,c; ria’, I is a finite non-empty subset of NU {0}, r; € QF,i e I.
Fix arbitrary j € I. (a’*!' +1)a™! = a’ +a™! € R by (i). Let r = min(1,r;).
Then (r(a’ +a™'),rja’ +a™') € pg, and so rja’ +a~' € R. Then g +a™' =
T ien gy i@’ + (rja? +a”!) € R by 4.5.

(ii), (iv) Use (i), (iii) and 4.3(iii). O

4.8 Proposition. QQ~ ' =S =RR™ (= QR = RQ).

Proof. By 4.7, a(a+1)"t € Q and a+1 € Q! = R for each a € S. Thus
ac€cQQ 1. O

4.9 Corollary. The following conditions are equivalent:
(i) Q=S (R=S, resp.).
(ii)) @ =P (R= P, resp.).
(11i) Q (R, resp.) is a parasemifield.
(iv) P=S.
(vVVP=Q=R=S.

4.10 Proposition. Q +Q*T = P.

Proof. We have QT C P C @, @ is a semiring, and so Q + QT C Q. Clearly,
Q + QT C R by the definition of R. Thus Q + Q* C QN R = P.

On the other hand, if a € P then a = r + 2z for r € Q7,2 € SU {0} (because
a € R). Putv=r/2+2z Wehavea € Q, (v,a) € ug, and so v € Q by the definition
of Q. Hencea=v+7r/2€ Q+Qt. O

4.11 Corollary. (ra+1)a=! € P for alla € R,r € Q*.

4.12 Lemma. Leta € S,k € N,g € K,. Then the elements (a+ 1)(a+2)71, (a +
2)(a+1)7 " (@ +a+1)(a"+ 1)~ (@F +1)(@" +a+1)7" (P +aF + 10" +
D7 (@ D) (@M +a +1) 7 (ag +a+1)(ag+1) 7 (ag +1)(ag +a+1)"" are
in P.

Proof. By 4.7(ii), (a +1)7! € Q, and hence (a +2)(a+ 1)t =(a+1)"t1+1€ P
by 4.10. The rest is similar. [

4.13 Lemma. Leta,b &€ P andc € S be such that b+a = c+a. Then b+b = c+b.

Proof. (a,b) € ng, and so a +d = 2™b for some d € S and m € N. Then b+ 2™b =
¢+ 2™b (see the proof of 1.8), and so b+b=c+ b by 1.7. O
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4.14 Lemma. Lete € S be such that 1 +e=1. Then:
(i)ec Q,e g P.
(ii) a+e=a for alla € P.
(iii) a + be = a for all a,b € P.

Proof. Clearly e € Q. From a/2 +e+1 = a/2+ 1 for all a € P it follows that
a + e = a by 4.13. Consequently, ab + be = ab for all a,b € P, thus ¢ + be = ¢ for
all b,c € P.

If ec P then e+ e =e, and so 2 =1, a contradiction. []

4.15 Lemma. Let a,b,c € Q) be such thata+b=a+c. Thenb+r = c+r for all
recQr.

Proof. We have ' = a+r € P,V =b+r € P, =c+r € P by 4.10. Since
a +b =d + ¢ and P is additively cancellative, we get b’ = ¢/. [

4.16 Corollary. Let b,c € ). Then (b,c) € pg if and only if b+r = c+r for all
reQt.

4.17 Proposition. pg | P =idp. In particular, pg # @ X Q.

Proof. 1If b,c € P are such that (b,c) € pg, then b+ 1 =c+1 by 4.16. Then b =c
by 3.11(v). O

4.18 Proposition. The semiring Q) is not finitely generated.
Proof. The result follows as an immediate consequence of 1.19 and 4.17. [J

4.19 Remark. Assume that the semiring S is generated by a finite set {x1,..., 2}
of its elements (m € N).

(i) Ny is clearly a subsemigroup of the cartesian power Z™ and the additive
semigroup S(+) is generated by the set {z¥* - zFm|(k1,... k) € NJ'}.

(i) Put N = {(Iy,...,ln) € N*|zl* .. zbn € Q}. From 4.4 it follows eas-
ily that N # () and that the additive semigroup Q(+) is generated by the set
(b |1y, .. L) € N

(iii) Clearly, N(+) is a subsemigroup of Nj*(+4). If N(+) were a finitely generated
semigroup, () would be a finitely generated semiring, a contradiction with 4.18.
Thus N(+) is not a finitely generated semigroup.

(iv) It follows easily from (iii) that m > 2. Moreover, if m = 2 then x; # ¥,
Ty # x¥, u,v € Z (in particular, z; # x5 ).

4.20 Remark. Let a € S. Put Q, = Q@ N K, (K, denotes the subsemiring of S
generated by QtU{a}). Denote M = {k € Ny|a* € Q,}. Then M is a subsemigroup
of Z(+) and M = {0} if and only if Q, = Q" and a € Q" (use 4.4 and 4.6(i)).

(i) Assume that M # {0}. If [ is the smallest positive integer in M, then | =1
by 4.6(i), and so M = Ny. Then Q, = K, by 4.4.

(ii) Assume that a™™ € K, for some n € N. Then a™™ = Y r;a’, therefore
Soriatt™ =1¢€ @, and a € Q by 4.4 and 4.6(i). Hence a™! = > r;a™ 1 € Q and
a€Q =R Thusa€c QNR=Pand Q, C K, C P.

(iii) Assume that the semiring S is finitely generated and Q U R C K, (i.e.
K, = S by 4.8). Then a~! € K,, and so Q = Q, = P by (ii). Consequently by
4.9, P =S, and so S is additively cancellative, a contradiction with 1.18.
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4.21 Corollary. Let S be a parasemifield that is 1-generated as a semiring. Then
S is additively idempotent.

Proof. Use 4.20(iii). O

4.22 Remark. (cf. 4.21) Every non-trivial finitely generated algebraic system has
at least one mazimal congruence. Combining this well-known fact with 3.14(i) and
[1, 10.1], one easily concludes that, in fact, no parasemifield is a one-generated
semiring.

On the other hand, the parasemifield Z(®,*), where m & n = min(m,n) and
m*n =m+mn, is a two-generated parasemifield (it is generated by the set {—1,1}).
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Conclusion

The thesis is concerned with the question whether every infinite (commutative)
semiring that is finitely generated and ideal-simple is additively idempotent.

Hence, in Chapter II we studied such semirings. Using the characterization of
ideal-simple semirings and the properties of related parasemifields and semifields,
we reduced the problem to the question whether every parasemifield that is finitely
generated as a semiring is additively idempotent.

To answer this question, in Chapter I1I we studied various properties of parasemi-
fields. From them we were able to prove the hypothesis for 1-generated parasemi-
fields.

The problem remains unsolved in general case. However, results in section II1.4
related to the semiring () seem to sugest a way of proceeding in the case with more
generators via the study of subsemigroups of Njj* (see remark II1.4.19). In this way
we were already able to prove the hypothesis in 2-generated case — see [4] and [6]
for details.

For further information about semirings, the reader can consult [1] or [2].
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