
Univerzita Karlova v Praze

Matematicko-fyzikální fakultaSVOÈ

Vítězslav Kala

Jednoduché polookruhy

Katedra algebry

Vedoucí práce: Prof. RNDr. Tomáš Kepka, DrSc.

2009



2

Děkuji svému vedoucímu profesoru Kepkovi za zajímavé téma práce. Dále děkuji
Jakubu Opršalovi za jeho cennou pomoc s úpravou diplomové práce v systému
AMS-TEX. Během psaní práce jsem byl podporovaný Grantovou agenturou Uni-
verzity Karlovy, grant číslo 8648/2008.



3

Contents

Introduction 5

Chapter I. Basic definitions 6

Chapter II. Finitely generated ideal-simple commutative semirings 8

1. Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2. Preliminaries continued . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3. Semifields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4. Semifields continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Chapter III. Parasemifields 14

1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2. Parasemifields – introduction . . . . . . . . . . . . . . . . . . . . . . . . 17
3. The relations µS , νS , ηS , and ρS . . . . . . . . . . . . . . . . . . . . . . 18
4. More results on parasemifields . . . . . . . . . . . . . . . . . . . . . . . 20

Conclusion 24

References 25



4

Název práce: Jednoduché polookruhy
Autor: Vítězslav Kala
Katedra (ústav): Katedra algebry
Vedoucí práce: Prof. RNDr. Tomáš Kepka, DrSc.
E-mail vedoucího: kepka@karlin.mff.cuni.cz
Abstrakt: Známé tvrzení říká, že pokud je komutativní těleso konečně gene-

rované jako okruh, je konečné. Tato práce je věnovaná zobecnění tohoto tvrzení
– problému, jestli je každý konečně generovaný ideálově jednoduchý komutativní
polookruh aditivně idempotentní nebo konečný. Pomocí charakterizace ideálově
jednoduchých polookruhů dokážeme, že tato otázka je ekvivalentní otázce, zda
je každé komutativní parapolotěleso (polookruh, jehož multiplikativní pologrupa
je grupou), které je konečně generované jako polookruh, aditivně idempotentní.
V práci odvodíme řadu užitečných vlastností takovýchto parapolotěles a využijeme
jich k vyřešení problému v jednogenerovaném případě. Na závěr uvedeme, jak je
možné využít získaných poznatků o parapolotělesech k vyřešení dvougenerovaného
případu pomocí zkoumání podpologrup Nm

0 .
Klíčová slova: polookruh, parapolotěleso, ideálově jednoduchý, konečně genero-

vaný, aditivně idempotentní

Title: Simple Semirings
Author: Vítězslav Kala
Department: Department of Algebra
Supervisor: Prof. RNDr. Tomáš Kepka, DrSc.
Supervisor’s e-mail address: kepka@karlin.mff.cuni.cz
Abstract: A well-known statement says that if a commutative field is finitely

generated as a ring, then it is finite. This thesis studies a generalization of this
statement – problem, whether every finitely generated ideal-simple commutative
semiring is additively idempotent or finite. Using the characterization of ideal-
simple semirings we prove that this question is equivalent to the question, whether
every commutative parasemifield (i.e., a semiring whose multiplicative semigroup
is a group), which is finitely generated as a semiring, is additively idempotent. In
the thesis we deduce various useful properties of such parasemifields and use them
to solve the problem in the one-generated case. Finally, we mention a way of using
obtained properties of parasemifields for the solution of the two-generated case via
the study of subsemigroups of Nm

0 .
Keywords: semiring, parasemifield, ideal-simple, finitely generated, additively

idempotent



5

Introduction

A classical fact states that a (commutative) field is finite provided that it is
finitely generated as a ring. Now, a ring is finitely generated if and only if it is
finitely generated as a semiring; a ring is ideal-simple if and only if it is congruence-
simple. Of course, simple commutative rings are just fields and zero-multiplication
rings of finite prime order. Consequently, every finitely generated simple commu-
tative ring is finite.
On the other hand, setting a ⊕ b = min(a, b) and a ⊙ b = a + b for all a, b ∈ Z,

we get an infinite commutative semiring that is both ideal- and congruence-simple
and that is two-generated. This semiring is additively idempotent and it is known
that every infinite finitely generated congruence-simple commutative semiring is
additively idempotent. However, it seems to be an open problem whether this
remains true in the ideal-simple case. It was probably first formulated in [1, 14.6].
The thesis is concerned with the study of this problem. In Chapter I we collect

standard definitions (mostly related to semirings) which are used throughout the
text.
In Chapter II we study ideal-simple semirings. Using the characterization of

these semirings, we reduce the question to a special case of semirings – those whose
multiplicative semigroups are groups (such semirings are called parasemifields). We
show that the following two statements are equivalent:
(a) Every infinite finitely generated ideal-simple commutative semiring is addi-

tively idempotent.
(b) Every (commutative) parasemifield that is finitely generated as a semiring is

additively idempotent.
The Chapter II consists of original results published in the article [3].
In Chapter III we study parasemifields, especially those that are finitely gener-

ated as semirings. We solve the problem for one-generated parasemifields (in fact,
there are no such parasemifields). This chapter consists of original results from the
article [5], which was submitted for publication.
In Conclusion we mention some other results related to the problem and suggest

a possible direction of further research which might eventually lead to a complete
solution.
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Chapter I

Basic definitions

Definition. A semiring is a non-empty set S supplied with two associative op-
erations (addition and multiplication) where the addition is commutative and the
multication distributes over the addition from both sides. I.e., for all x, y, z ∈ S
holds
(i) x+ (y + z) = (x+ y) + z;
(ii) x(yz) = (xy)z;
(iii) x+ y = y + x;
(iv) x(y + z) = xy + xz and (x+ y)z = xz + yz.
A semiring is a ring if the addition defines an abelian group, i.e., if further:
(v) there exists 0 ∈ S such that x+ 0 = x for all x ∈ S;
(vi) for all x ∈ S there exists −x ∈ S such that x+ (−x) = 0.

Definition. A semiring S is commutative if for all x, y ∈ S holds xy = yx.

Definition. A non-trivial semiring S is a parasemifield if the multiplication defines
a non-trivial group, i.e.
(i) there exists 1 ∈ S such that x1 = x = 1x for all x ∈ S;
(ii) for all x ∈ S there exists x−1 ∈ S such that xx−1 = 1 = x−1x.

Definition. A non-trivial semiring S is a semifield if
(i) there exists an element w ∈ S such that w is multiplicatively absorbing (i.e.

Sw = wS = w);
(ii) the set S\{w} is a subgroup of the multiplicative semigroup of S (i.e., there

exists 1 ∈ S\{w} such that x1 = x = 1x for all x ∈ S\{w}; for all x ∈ S\{w} there
exists x−1 ∈ S\{w} such that xx−1 = 1 = x−1x).

Definition. Let S be a semiring. A non-empty subset T of S is a subsemiring of
S if it is a semiring (in other words, T is closed under addition and multiplication).
Similarly we define a subparasemifield and a subsemifield.

Definition. Let S be a semiring. A non-empty subset I of S is an ideal if (I +
I) ∪ SI ∪ IS ⊆ I, i.e., for all a, b ∈ I, s ∈ S holds
(i) a+ b ∈ I;
(ii) sa ∈ I, as ∈ I.
The semiring is called ideal-simple if S is non-trivial and I = S whenever I is

an ideal containing at least two elements.

Definition. Let S be a semiring. A relation ρ ⊆ S × S is an equivalence if it is
(i) reflexive ((x, x) ∈ ρ for all x ∈ S);
(ii) symmetric (if (x, y) ∈ ρ for x, y ∈ S then (y, x) ∈ ρ);
(iii) transitive (if (x, y), (y, z) ∈ ρ for x, y, z ∈ S then (x, z) ∈ ρ).
An equivalence on S is a congruence if for all x, y, z ∈ S such that (x, y) ∈ ρ

holds
(iv) (x+ z, y + z) ∈ ρ;
(v) (xz, yz) ∈ ρ, (zx, zy) ∈ ρ.
A semiring S is called congruence-simple if there are just two congruences on S.
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Definition. Let S be a semiring. A relation ρ ⊆ S × S is a quasiordering if it is
reflexive and transitive.
A quasiordering on S is an ordering if it is antisymmetric, i.e., if (x, y), (y, x) ∈ ρ

for x, y ∈ S then x = y.
A quasiordering on S is stable if for all x, y, z ∈ S such that (x, y) ∈ ρ holds

(x+ z, y + z) ∈ ρ and (xz, yz) ∈ ρ, (zx, zy) ∈ ρ.

Definition. A semiring S is called additively idempotent if for all x ∈ S holds
x+ x = x, and multiplicatively idempotent if for all x ∈ S holds xx = x.

Definition. A semiring S is called additively cancellative if for all x, y, z ∈ S such
that x+y = x+ z holds y = z, and multiplicatively cancellative if for all x, y, z ∈ S
such that xy = xz or yx = zx holds y = z.

Definition. A semiring S is called additively constant if there exists x ∈ S such
that for all y, z ∈ S holds y + z = x, multiplicatively constant if there exists x ∈ S
such that for all y, z ∈ S holds yz = x.

Definition. A semiring S is called semisubtractible if for all x, y ∈ S there exists
z ∈ S such that x = y + z or y = x+ z.

Definition. Let S be a semiring. An element w ∈ S is called additively neutral if
for all x ∈ S holds x+ w = x. An element w ∈ S is called multiplicatively neutral
if for all x ∈ S holds xw = x = wx.

Definition. Let S be a semiring. An element w ∈ S is called additively absorbing
if for all x ∈ S holds x + w = w. An element w ∈ S is called multiplicatively
absorbing if for all x ∈ S holds xw = w = wx.

Definition. Let S be a semiring. The semiring is generated by a set A ⊆ S if
whenever T ⊆ S is a semiring containing A, we have T = S. In this case we also
say that A generates S.
Let k be a non-negative integer. A semiring S is said to be k-generated if there is

a set A, |A| = k, which generates S, and there is no set B, |B| < k, which generates
S.
A semiring S is said to be finitely generated if it is k-generated for some non-

negative integer k.

Notation. We use the following (standard) notation:
N . . . the set of all positive integers
N0 . . . the set of all non-negative integers
Z . . . the set of all integers
Q . . . the set of all rational numbers
Q+ . . . the set of all positive rational numbers
Q+0 . . . the set of all non-negative rational numbers
R . . . the set of all real numbers
R+ . . . the set of all positive real numbers
R+0 . . . the set of all non-negative real numbers
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Chapter II

Finitely generated ideal-simple commutative semirings

1. Preliminaries

The following lemma is obvious.

1.1 Lemma. The following conditions are equivalent for a ring R:
(i) R is ideal-simple as a ring.
(ii) R is ideal-simple as a semiring.
(iii) R is congruence-simple as a ring.
(iv) R is congruence-simple as a semiring.
(And then R is called simple.)

Every two element semiring is both ideal- and congruence-simple and it is easy to
see there are exactly ten two element semirings (up to isomorphism). The following
eight of them are commutative:

S1 S2
+ 0 1
0 0 0
1 0 0

· 0 1
0 0 0
1 0 0

+ 0 1
0 0 0
1 0 0

· 0 1
0 0 0
1 0 1

S3 S4
+ 0 1
0 0 0
1 0 1

· 0 1
0 0 0
1 0 0

+ 0 1
0 0 0
1 0 1

· 0 1
0 1 1
1 1 1

S5 S6
+ 0 1
0 0 0
1 0 1

· 0 1
0 0 1
1 1 1

+ 0 1
0 0 0
1 0 1

· 0 1
0 0 0
1 0 1

S7 S8
+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 0

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

Notice that S1 and S2 are additively constant, S3, S4, S5 and S6 are additively
idempotent and S7 and S8 are rings. Moreover, S1, S3, S4 and S7 are multiplicatively
constant and S2, S5, S6 and S8 are multiplicatively idempotent.
The following lemma is easy to prove.

1.2 Lemma. Let S be a non-trivial semiring containing an element w such that
T = S\{w} is a subgroup of the multiplicative semigroup of S.
(i) If w is multiplicatively neutral (i.e., w = 1S), then T is a subsemiring of S.
(ii) If w is multiplicatively absorbing but not additively absorbing, then w is

additively neutral (i.e., w = 0S) and either S is a division ring or T is a subsemiring
of S.
(iii) If |S| ≥ 3 and w is neither multiplicatively neutral nor multiplicatively

absorbing then there exists v ∈ T such that wx = vx and xw = xv for every x ∈ S.
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2. Preliminaries continued

Only commutative semirings will be dealt with in the rest of the chapter, and
hence the word ’semiring’ will always mean a commutative semiring.
Clearly, each parasemifield is ideal-simple (in fact, ideal-free). Also, every semi-

field is ideal-simple.
We have the following basic classification of ideal-simple semirings (see e.g. [1,

11.2]):

2.1 Theorem. A semiring S is ideal-simple if and only if it is of at least (and
then just) one of the following five types:
(1) S ≃ S1, S3, S4;
(2) S is a zero-multiplication (i.e., xy = 0 for all x, y ∈ S) ring of finite prime

order;
(3) S is a field;
(4) S is a proper semifield;
(5) S is a parasemifield.

2.2 Proposition. ([1, 14.3]) Every infinite finitely generated congruence-simple
semiring is additively idempotent.

2.3 Proposition. ([1, 14.5]) No infinite finitely generated ideal-simple semiring is
additively cancellative.

2.4 Example. (i) The parasemifield Q+×Q+ (where Q denotes the field of rational
numbers) is ideal-simple but not congruence-simple.

(ii) Denote by W the set of real numbers of the form m − n
√
2, where m,n are

non-negative integers and m+n ≥ 1. Put a⊕ b = min(a, b) and a⊙ b = a+ b for all
a, b ∈ W . ThenW (⊕,⊙) is an infinite finitely generated congruence-simple semiring
that is not ideal-simple. This semiring is additively idempotent and multiplicatively
cancellative.

3. Semifields

In the following three lemmas, let S be a non-trivial semiring and let w ∈ S be
such that T = S\{w} is a subgroup of the multiplicative semigroup S(·).
3.1 Lemma. If 1T w = w then Sw = w (i.e., w is multiplicatively absorbing) and
S is a semifield.

Proof. If aw = v 6= w for some a ∈ T , then w = 1T w = a−1aw = a−1v ∈ T , a
contradiction. Consequently, Tw = w and it remains to show that ww = w.
Assume that ww = u ∈ T . Then 1T = u−1u = u−1ww = ww = u according

to the preceding part of the proof, and therefore ww = 1T and a = a1T = aww =
ww = 1T for every a ∈ T . Thus we have shown that S = {w, 1T } and that S has
the following multiplication table:

w 1T
w 1T w
1T w 1T

Therefore w(w + 1T ) = ww + w1T = 1T + w, a contradiction since wz 6= z for
every z ∈ S. �
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3.2 Lemma. Assume that 1T w = z ∈ T and ww ∈ T . Then:
(i) T is a subsemiring of S.
(ii) If |T | = 1 then S ≃ S1, S3, S4, S7.
(iii) If |T | ≥ 2 then T is a parasemifield (and so T is infinite).
(iv) aw = az for every a ∈ T .
(v) ww = zz.
(vi) Sw ⊆ T and T is an ideal of S.
(vii) If a ∈ T then either w + a = z + a ∈ T or w + a = w and z + a = z.
(viii) If w + w ∈ T then w + w = z + z.
(ix) If w + w = w then S is additively idempotent.

Proof. If a, b ∈ T are such that a+b = w, then w = a+b = a1T +b1T = (a+b)1T =
w1T = z, a contradiction. Thus T + T ⊆ T and T is a subsemiring of S. Further,
aw = a1T w = az, a ∈ T, and ww = ww1T = wz = zz. The rest is easy. �

3.3 Lemma. Assume that 1T w = z ∈ T and ww = w. Then
(i) T is a subsemiring of S.
(ii) If |T | = 1 then S ≃ S2, S5, S6, S8.
(iii) If |T | ≥ 2 then T is a parasemifield (and so T is infinite).
(iv) z = 1T .
(v) wv = v for every v ∈ S (i.e., w = 1S).
(vi) T is an ideal of S.
(vii) If a ∈ T then either w + a = 1T + a ∈ T or w + a = w and 1T + a = 1T .
(viii) If w + w ∈ T then w + w = 1T + 1T .
(ix) If w + w = w then S is additively idempotent.

Proof. Similar to that of 3.2. �

3.4 Lemma. Let S be a non-trivial semiring and let w1, w2 ∈ S be such that both
T1 = S\{w1} and T2 = S\{w2} are subgroups of the multiplicative semigroup S(·).
Then either w1 = w2 or |S| = 2 and S ≃ S2, S5, S6, S8.

Proof. Assume that w1 6= w2. If |S| = 2 then S = {1T1 , 1T2}, and hence S is
multiplicatively idempotent. If |S| ≥ 3 then T1 ∩ T2 6= ∅. Now, w1 ∈ T2 and
there is a ∈ T2 such that w1a ∈ T1 ∩ T2. Moreover, w1ab = 1T1 for some b ∈ T1
and cw1 = 1T2 for some c ∈ T2. Then c1T1 = cw1ab = 1T2ab = ab and 1T21T1 =
w1c1T1 = w1ab = 1T1 . Similarly we get 1T21T1 = 1T2 , and therefore 1T1 = 1T2 = 1T
is a multiplicatively neutral element of S. Then every element from S has an
inverse, and so S is a group, a contradiction (see 3.1 and 3.2). �

3.5 Proposition. Let S be a non-trivial semiring and let w ∈ S be such that the
set S\{w} is a subgroup of S(·). Then S is a semifield (i.e., Sw=w) in each of the
following cases:
(1) 1T w = w;
(2) ww = w and 1T w 6= 1T ;
(3) S 6≃ S1, S7, S is not additively idempotent and Q+ is not isomorphic to a

subsemiring of S;
(4) S is finite, S 6≃ S1, S7 and S is not additively idempotent.

Proof. Combine 3.1, 3.2 and 3.3. �



11

4. Semifields continued

4.1. Let T be a parasemifield. Then 0 6∈ T ; let S = T ∪ {0}, x + 0 = x = 0 + x
and x0 = 0 = 0x for every x ∈ S. In this way we get a semifield (containing T as
a semiring), which will be denoted X(T ) in the sequel.

4.1.1 Lemma. (i) X(T ) is additively idempotent (resp. additively cancellative) if
and only if T is such.
(ii) A subset M of X(T ) generates X(T ) as a semiring if and only if 0 ∈ M and

M ∩ T generates T as a semiring (then |M | ≥ 2).
(iii) X(T ) is a finitely generated semiring if and only if T is such.
(iv) X(T ) is not a one-generated semiring; it is a two-generated semiring if and

only if T is a one-generated semiring.

Proof. Easy to see. �

4.2. Let A(·) be a non-trivial abelian group, o 6∈ A, S = A∪{o}, x+o = o = o+x,
x ∈ S; a + a = a and a + b = o, a, b ∈ A, a 6= b. Moreover, xo = o = ox, x ∈ S.
In this way we get an additively idempotent semifield which will be denoted as
V(A(·)).
4.2.1 Lemma. (i) A subset M of V(A(·)) generates V(A(·)) as a semiring if and
only if M ∩ A generates A(·) as a semigroup.
(ii) V(A(·)) is a finitely generated semiring if and only if A(·) is a finitely gen-

erated group.
(iii) V(A(·)) is a one-generated semiring if and only if A(·) is a one-generated

semigroup. This is equivalent to the fact that A(·) is a finite cyclic group.
(iv) V(A(·)) is generated by a two-element set containing the unit element if and

only if A(·) is a finite cyclic group (see (iii)).
Proof. Easy to see. �

4.3. Let T be a parasemifield, o 6∈ T , S = T ∪ {o}, x + o = o + x = xo = ox = o
for every x ∈ S. In this way we get a semifield which will be denoted as U(T ).

4.3.1 Lemma. (i) U(T ) is additively idempotent if and only if T is such.
(ii) A subset M of U(T ) generates U(T ) as a semiring if and only if o ∈ M and

M ∩ T generates T as a semiring (then |M | ≥ 2).
(iii) U(T ) is a finitely generated semiring if and only if T is such.
(iv) U(T ) is not a one-generated semiring; it is a two-generated semiring if and

only if T is a one-generated semiring.

Proof. Easy to see. �

4.4. Let T be a parasemifield and let the multiplicative group T (·) be a proper
subgroup of an abelian group A(·), o 6∈ A. Put S = A ∪ {o} and define
a) x+ o = o = o+ x, x ∈ S;
b) a+ b = o, a, b ∈ A, a−1b 6∈ T ;
c) c+ d = (1T + c−1d)c(= (1T + d−1c)d), c, d ∈ A, c−1d ∈ T .
Moreover, put xo = o = ox, x ∈ S. In this way we get a semifield which will be

denoted as W(T,A(·)).
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4.4.1 Lemma. (i) T is a subsemiring of W(T,A(·)).
(ii) W(T,A(·)) is additively idempotent if and only if T is such.
(iii) A subset M of W(T,A(·)) generates it as a semiring if and only if M\{o}

generates S.

Proof. Easy to see. �

4.4.2 Lemma. If the semiring W(T,A(·)) is generated by a1, . . . , am ∈ A,m ≥ 1,
then the factorgroup A(·)/T (·) is generated by the cosets a1T, . . . , amT as a semi-
group.

Proof. Let a ∈ A. Then a = b1 + · · · + bn, n ≥ 1, bj = a
k1,j

1 · · · akm,j

m , ki,j ≥ 0. If
b−1j1

bj2 6∈ T for some 1 ≤ j1 < j2 ≤ n, then bj1+bj2 = o and so a = o, a contradiction.

Thus b−1j1
bj2 ∈ T , and so bj = cjb1, cj ∈ T . Then a = cb1, c = c1 + · · · + cn and

aT = b1T . The rest is clear. �

4.4.3 Lemma. Let a1, . . . , am ∈ A,m ≥ 1, be such that the factorgroup A(·)/T (·)
is generated by the cosets a1T, . . . , amT as a semigroup. Denote by B the subsemi-
group of A(·) generated by the elements a1, . . . , am. Then for every a ∈ A there are
b ∈ B and c ∈ T such that a = bc.

Proof. Obvious. �

4.4.4 Lemma. If W(T,A(·)) is a finitely generated semiring then T is also.

Proof. Let the semiring be generated by a1, . . . , am ∈ A,m ≥ 1. Denote by B the
subsemigroup of A(·) generated by these elements. Then C = BB−1∩T is a finitely
generated subgroup of T (·), and hence the subsemiring T1 of T generated by C is
a finitely generated semiring. It remains to show that T = T1.
Let a ∈ T . Then a = b1 + · · · + bn, n ≥ 1, bj ∈ B, bj = cjb1, cj = bjb

−1
1 ∈ C

(see the proof of 4.4.2), and therefore a = cb1, c = c1 + · · · + cn ∈ T1. Of course,
b1 = c−1a ∈ B ∩ T ⊆ C ⊆ T1 and so a, b1, . . . , bn ∈ T1. �

4.4.5 Lemma. W(T,A(·)) is a finitely generated semiring if and only if T is a
finitely generated semiring and A(·)/T (·) is a finitely generated group.
Proof. Combine 4.4.2, 4.4.3 and 4.4.4. �

4.4.6 Remark. Assume that W(T,A(·)) is generated by a single element s as a
semiring, denote 1W = 1W(T,A(·)). We have s ∈ A; B = {s, s2, s3, . . . } is the sub-
semigroup of A(·) generated by s and BB−1 = {. . . , s−3, s−2, s−1, 1W, s, s2, s3, . . . }
is the subgroup generated by s. Notice that s 6= 1W.
(i) For every a ∈ A there are m ≥ 1 and 1 ≤ k1 ≤ · · · ≤ km such that a =

sk1 + sk2 + · · ·+ skm = sk1b, b = 1W + sk2−k1 + · · ·+ skm−k1 . Since a 6= o, we have
sk2−k1 , . . . , skm−k1 ∈ T and so b ∈ T . Moreover, if a ∈ T then sk1 = ab−1 ∈ T and
consequently sk1 , sk2 , . . . , skm ∈ T .
(ii) It follows from (i) that D = B ∩ T 6= ∅ and so D is a subsemigroup and

C = DD−1 a subgroup of T (·). Consequently, there is n ≥ 0 such that C =
{. . . , s−3n, s−2n, s−n, 1W, sn, s2n, s3n, . . . }.
(iii) Denote by T1 the subsemiring of T generated by s−n and sn. It follows from

(i) and (ii) that T1 = T . Consequently, n ≥ 1 and T is a two-generated semiring.
(iv) The factorgroup A(·)/T (·) is generated by the coset sT as a semigroup.

Thus A(·)/T (·) is a finite cyclic group.



13

(v) Proceeding similarly as above, one can show that (iii) and (iv) remain true
if W(T,A(·)) is generated by 1W and s as a semiring.

4.5 Theorem. Let S be a semifield and let w ∈ S be such that w is multiplicatively
absorbing and T = S\{w} is a subgroup of S(·). Then just one of the following
eight cases takes place:
(1) S ≃ S2 (and w is bi-absorbing);
(2) S ≃ S5 (and w is additively neutral);
(3) S ≃ S6 (and w is bi-absorbing);
(4) T is a subparasemifield of S and S ≃ X(T ) (and w is additively neutral);
(5) |S| ≥ 3 and S ≃ V(T (·)) (and w is bi-absorbing and S is additively idempo-

tent);
(6) T is a subparasemifield of S and S ≃ U(T ) (and w is bi-absorbing);
(7) T1 = {a ∈ T |a + 1T 6= w} is a subparasemifield of S, T1 6= T , and S ≃

W(T1, T (·)) (and w is bi-absorbing);
(8) S is a field.

Proof. Easy (use 3.1, 3.2 and 3.3). �

5. Summary

5.1 Summary. Combining 2.1, 4.5, 4.1.1 (i), (iii), 4.2, 4.3.1 (i), (iii), 4.4.1(ii) and
4.4.4, we conclude that the following two assertions are equivalent:
(a) Every infinite finitely generated ideal-simple semiring is additively idempo-

tent.
(b) Every parasemifield that is finitely generated as a semiring is additively idem-

potent.

5.2 Remark. Let F be a field. If F is a finitely generated ring then F is finite. If
F is finite then the multiplicative group F\{0} is cyclic, and hence F is generated
by one element as a semiring.

5.3 Remark. Let S be a one-generated ideal-simple semiring. Combining 2.1, 4.5,
4.1.1(iv), 4.2.1(iii), 4.3.1(iv), 4.4.6 and 5.2, we get that one of the following cases
takes place:
(1) S ≃ S1, S3, S4;
(2) S is a zero multiplication ring of finite prime order;
(3) S is a finite field;
(4) S ≃ V(A(·)), where A(·) is a non-trivial finite cyclic group;
(5) S ≃ W(T,A(·)), where T is a two-generated parasemifield and A(·)/T (·) is a

(non-trivial) finite cyclic group;
(6) S is a parasemifield.
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Chapter III

Parasemifields

1. Preliminaries

Define a relation µS on S by (a, b) ∈ µS if and only if b = a + z for some
z ∈ S ∪ {0}. Then µS is a stable quasiordering of the semiring S and νS = kerµS

is a congruence of S. The following two lemmas are obvious.

1.1 Lemma. The following conditions are equivalent:

(i) µS = S × S,

(ii) νS = S × S,

(iii) S is a ring (i.e., S(+) is an abelian group).

1.2 Lemma. µS is an ordering of S if and only if νS = idS.

1.3 Lemma. Put T = S/νS. Then

(i) (a, b) ∈ µS if and only if (a/νS , b/νS) ∈ µT .

(ii) νT = idT and µT = µS/νS.

(iii) µT is a stable ordering of the semiring T .

Proof. Denote by π the natural projection of S onto T . If (a, b) ∈ µS then b = a+z,
z ∈ S ∪ {0}, π(b) = π(a) + π(z) and (π(a), π(b)) ∈ µT . Conversely, if (π(a), π(b)) ∈
µT then π(a + z) = π(b) for some z ∈ S ∪ {0}, and hence (a + z, b) ∈ νS and
a+ z + v = b, v ∈ S ∪ {0}. Then, of course, (a, b) ∈ µS . The rest is clear. �

Now, define a relation ηS on S by (a, b) ∈ ηS if and only if there exist m,n ∈ N

such that (a,mb) ∈ µS and (b, na) ∈ µS .

1.4 Lemma. (a, b) ∈ ηS if and only if there exist c, d ∈ S ∪ {0} and k ∈ N0 such
that a+ c = 2kb and b+ d = 2ka.

Proof. Easy to check. �

1.5 Lemma. (i) ηS is a congruence of S, the factor-semiring S/ηS is additively
idempotent and νS ⊆ ηS.

(ii) ηS is the smallest congruence of S such that the corresponding factor is
additively idempotent.

Proof. (i) Easy to check.

(ii) Let r be a congruence of S such that S/r is additively idempotent. If (a, b) ∈
ηS then a + u = mb, b + v = na for some u, v ∈ S ∪ {0}, m,n ∈ N, and so
(a+ u, b) ∈ r and (b+ v, a) ∈ r. Moreover, (a+ u, a+ b) ∈ r and (b+ v, b+ a) ∈ r.
Thus (na,mb) ∈ r, which implies (a, b) ∈ r. �

1.6 Corollary. (i) ηS = idS if and only if S is additively idempotent.

(ii) ηS = νS if and only if for every a ∈ S there exists z ∈ S ∪ {0} such that
2a+ z = a.

(iii) The set {a ∈ S|2a = a} is either empty or an ideal of S.
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1.7 Lemma. Let A(+) be a commutative semigroup such that the mapping x 7→ 2x
is an injective transformation (in fact, an endomorphism) of A. If b, c ∈ A and
m ∈ N0 are such that b+ 2mb = c+ 2mb, then b+ b = c+ b.

Proof. Assume that m is the smallest possible. If m ≥ 1 then 2(b + 2m−1b) =
b + b + 2mb = b + c + 2mb = c + b + 2mb = c + c + 2mb = 2(c + 2m−1b), and so
b+ 2m−1b = c+ 2m−1b, a contradiction. Thus m = 0 and b+ b = c+ b. �

1.8 Lemma. If A is a block of ηS then A is a subsemigroup of S(+). If, more-
over, the transformation x 7→ 2x, x ∈ A, is injective, then A(+) is a cancellative
semigroup.

Proof. Let a+b = a+c, a, b, c ∈ A. We have (a, b) ∈ ηS , and so there is d ∈ S∪{0}
and m ∈ N0 such that a+d = 2mb (see 1.4). Then b+2mb = b+a+d = c+a+d =
c+ 2mb. Hence b+ b = b+ c by 1.7 and c+ c = c+ b symmetrically. Thus 2b = 2c
and b = c. �

1.9 Remark. We have ηS = S × S if and only if S is additively archimedean.
When S is such and x 7→ 2x, x ∈ S, is injective, then S is additively cancellative.

Define a relation ρS on S by (a, b) ∈ ρS if and only if a + z = b + z for some
z ∈ S ∪ {0}.
1.10 Lemma. (i) ρS is a congruence of S and the factor-semiring is additively
cancellative.
(ii) ρS is the smallest congruence of S such that the factor-semiring is additively

cancellative.

Proof. Easy to check. �

1.11 Corollary. ρS = idS if and only if S is additively cancellative.

1.12 Lemma. (i) ρS = S × S if and only if (a, 2a) ∈ ρS for all a ∈ S.
(ii) If S is additively idempotent, then ρS = S × S.

Proof. (i) The direct implication is trivial. Conversely, if (a, 2a) ∈ ρS for all a ∈ S,
then (a + b, 2a + b) ∈ ρS , a, b ∈ S, and (a + b, 2b + a) ∈ ρS , symmetrically. Thus
(a+ (a+ b), b+ (a+ b)) ∈ ρS , and so (a, b) ∈ ρS .
(ii) Clearly, a+ (a+ b) = b+ (a+ b) for all a, b ∈ S. �

1.13 Lemma. If a+ b = b for a, b ∈ S, then (a, 2a) ∈ ρS.

Proof. We have 2a+ b = a+ b, and hence (a, 2a) ∈ ρS . �

1.14 Lemma. Assume that 1S ∈ S. Then the following conditions are equivalent:
(i) ρS = S × S.
(ii) (1S , 2S) ∈ ρS.
(iii) 1S + c = c for some c ∈ S.
(iv) For every a ∈ S there exists b ∈ S such that a+ b = b.
(v) (a, 2a) ∈ ρS for all a ∈ S.

Proof. (i)⇒(ii) trivially, (iv)⇒(v) by 1.13, and (v)⇒(i) by 1.12.
(ii)⇒(iii): We have 1S + d = 2S + d for some d ∈ S. Then 1S + c = c, where

c = 1S + d.
(iii)⇒(iv): We have a+ ac = ac. �
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1.15 Lemma. Assume that 0S ∈ S. Then the following conditions are equivalent:
(i) ρS = S × S.
(ii) (a, 2a) ∈ ρS for all a ∈ S.
(iii) (a, 0S) ∈ ρS for all a ∈ S.
(iv) For every a ∈ S there exists b ∈ S such that a+ b = b.

Proof. Use 1.12. �

1.16 Lemma. (i) Let I be an ideal of a semiring S such that I has a unit element
1I . If S is generated by a set M , then I (as a semiring) is generated by the set
M1I . In particular, if S is finitely generated, then I is so.
(ii) Let S be finitely generated semiring with a subsemiring Q ∼= Q+. Then S ·1Q

is a finitely generated semiring with unit 1Q containing a copy of Q+.

Proof. Easy to see. �

1.17 Lemma. The semiring Q+ of positive rational numbers is congruence-simple.

Proof. Let r be a congruence of Q+, r 6= id. Then there are positive integers m > n
such that (m,n) ∈ r. Choose k ∈ N such that mk > 2nk. We have (mk, nk) ∈ r,
and so (mk −nk, 2(mk −nk)) = (nk+(mk −2nk),mk+(mk −2nk)) ∈ r. Therefore
(1, 2) = ((mk − nk)(mk − nk)−1, 2(mk − nk)(mk − nk)−1) ∈ r. Thus (s, t) ∈ r for
all s, t ∈ Q+, and so r = Q+ × Q+. �

1.18 Proposition. Let T be a finitely generated semiring such that Q ≃ Q+ is a
subsemiring of T . Then T is not additively cancellative.

Proof. Assume that T is additively cancellative and denote by R the Dorroh ex-
tension of the difference ring of T . R is a finitely generated ring, has a unit element
and the field Q of rational numbers is isomorphic to a subring of R containing Q.
Let I be a maximal ideal of R. Since Q is a simple ring, we get either Q ⊆ I

or Q ∩ I = 0. If Q ∩ I = 0 then Q is isomorphic to a subring of R/I. But R/I
is a finitely generated field, hence finite, a contradiction. Thus Q ⊆ I. Hence
1Q ∈ Q ⊆ ⋂

I∈Max(R) I = J(R), a contradiction. �

1.19 Lemma. Let S be a finitely generated semiring with unit containing a sub-
semiring Q ≃ Q+ such that 1S ∈ Q. Then ρS = S × S.

Proof. First, put T = S/ρS . Then T is a finitely generated additively cancellative
semiring (and T is trivial if and only if ρS = S × S). If ρS ↾ Q = idQ then Q+ is
isomorphic to a subsemiring of T , which is impossible by 1.18. Thus ρS ↾ Q 6= idQ.

Q ≃ Q+ is congruence-simple by 1.17, and so ρS ↾ Q = Q×Q and Q is contained
in a block of ρS . Consequently, 1/ρS is an additively idempotent element of T and,
since T is additively cancellative, it follows easily that 1/ρS is additively neutral
and multiplicatively absorbing. Thus a/ρS = (a · 1)/ρS = a/ρS · 1/ρS = 1/ρS for
every a ∈ S and ρS = S × S. �
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2. Parasemifields – introduction

2.1 Lemma. Let S be a parasemifield. Then:
(i) 0S 6∈ S and 1S ∈ S.
(ii) S is infinite.
(iii) S is ideal-free (i.e., S is the only ideal of S).

Proof. The automorphism group of S(+) is transitive and the rest is clear. �

2.2 Lemma. Let S be a parasemifield.
(i) S is additively idempotent if and only if 1S = 2S.
(ii) If S is not additively idempotent and P denotes the smallest subparasemifield

of S (i.e., the subparasemifield generated by 1S), then P ≃ Q+.

Proof. (i) Easy to see.
(ii) P is a homomorphic image of Q+, i.e., P ≃ Q+/r for a congruence r of Q+.

But Q+ is congruence-simple by 1.17. If r = Q+ × Q+ then P is trivial and S is
additively idempotent. Thus r = id and P ≃ Q+. �

2.3 Remark. (i) Parasemifields together with trivial semirings form an equational
class of universal algebras (two binary, one unary and one nullary operation).
(ii) If κ ≥ 2 is a cardinal number then the parasemifield (Q+)κ is not congruence-

simple.

2.4 Lemma. A semiring S is a parasemifield if and only if S is ideal-free.

Proof. If S is ideal-free then Sa = S for every a ∈ S, and hence S(·) is a group. �

2.5 Remark. Let S be a parasemifield. Then S(∗, ·) is again a parasemifield,
where a ∗ b = (a−1 + b−1)−1 for all a, b ∈ S (the adjoint parasemifield).
The mapping a 7→ a−1 is an isomorphism of S(+, ·) onto S(∗, ·) and vice versa.

2.6 Remark. ([7]) There exists a one-to-one correspondence between additively
idempotent parasemifields and lattice-ordered abelian groups. If S is an additively
idempotent parasemifield, a ∧ b = a+ b and a ∨ b = (a−1 + b−1)−1 (= a ∗ b), then
S(·,∧,∨) is a lattice-ordered group. Conversely, if S(·,∧,∨) is a lattice-ordered
group and a+ b = a ∧ b, then S(+, ·) is an additively idempotent parasemifield.
2.7 Remark. Let S be a non-trivial multiplicatively cancellative semiring. Then
there exists a parasemifield P (the parasemifield of fractions) such that P =
{ab−1|a, b ∈ S}. Moreover, P is additively idempotent (cancellative, resp.) if
and only if S is so.

2.8 Lemma. Let S be a parasemifield. Then the multiplicative group S(·) is tor-
sionfree.

Proof. Let a ∈ S and m ∈ N be such that am = 1. Then a(1 + a+ · · ·+ am−1) =
a+ a2 + · · ·+ am−1 + 1, and therefore a = 1. �
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3. The relations µS, νS, ηS, and ρS

Throughout this section, let S be a parasemifield.

3.1 Lemma. If a, b ∈ S, k ∈ N are such that (ak, bk) ∈ µS, then (a, b) ∈ µS.

Proof. We have bk = ak + z for some z ∈ S ∪ {0}. Let x = ak−1 + ak−2b + · · · +
abk−2 + bk−1. Then bx = ak−1b + ak−2b2 + · · · + abk−1 + bk = ak−1b + ak−2b2 +
· · ·+ abk−1 + ak + z = ax+ z, and so b = a+ zx−1 and (a, b) ∈ µS . �

3.2 Lemma. Let r ∈ Q+ and k ∈ N be such that rk+1 < k+1. Then (rS , a+a−k) ∈
µS for every a ∈ S.

Proof. We have (a+ a−k)k+1 = ak+1 + (k + 1)aka−k + · · · = (k + 1) + z for some

z ∈ S, thus ((k + 1)S , (a+ a−k)k+1) ∈ µS . Further (r
k+1
S , (k + 1)1S) ∈ µS , and so

(rk+1
S , (a+ a−k)k+1) ∈ µS and (rS , a+ a−k) ∈ µS by 3.1. �

3.3 Corollary. (1S , a+ a−k) ∈ µS for all a ∈ S and k ∈ N.

3.4 Lemma. For all n ∈ N,

lim
m→∞

(

(n+ 1)m

nm

)1/(n+1)m

=
n+ 1

n
· n1/(n+1).

Proof. Put am =
(

(n+1)m
nm

)

. Then limm→∞
am+1

am
= limm→∞

((n+1)m+n+1)!(nm)!m!
(nm+n)!(n+1)!((n+1)m)!

= limm→∞
((n+1)m+n+1)...((n+1)m+1)
(nm+n)...(nm+1)(m+1) = (n+1)n+1

nn . Using the well-known Cauchy

criterion we get limm→∞ a
1/m
m = limm→∞

am+1

am
= (n+1)n+1

nn . �

3.5 Remark. Denote n+1
n · n1/(n+1) = f(n). Then f(1) = 2, f(n) > f(n+ 1) and

limn→∞ f(n) = 1. Also f(n) >
(

(n+1)m
nm

)1/(n+1)m
for all m ∈ N. (Use the binomial

formula for f(n)(n+1)m = (n1/(n+1) + n−n/(n+1))(n+1)m. The rest is easy.)

3.6 Lemma. ((f(n)− r)S , a+ a−n) ∈ µS for all n ∈ N, a ∈ S, r ∈ Q+, r < f(n).

Proof. Denote f(n) − r = x. There is a positive integer m such that x(n+1)m <
(

(n+1)m
nm

)

by 3.4 and 3.5. Using the binomial formula for (a+a−n)(n+1)m we see that
(

(

(n+1)m
nm

)

1S , (a+ a−n)(n+1)m
)

∈ µS . Consequently, (x
(n+1)m
S , (a+ a−n)(n+1)m) ∈

µS and therefore (xS , a+ a−n) ∈ µS by 3.1. �

3.7 Lemma. If (a, b) ∈ µS then (b
−1, a−1) ∈ µS.

Proof. If a+ z = b then a−1 = b−1 + z(ab)−1. �

3.8 Lemma. (i) (a(an+1 + 1S)
−1, 1S) ∈ µS for every a ∈ S, n ∈ N.

(ii) (a(an+1 + 1S)
−1, (f(n) − r)−1S ) ∈ µS for every n ∈ N, a ∈ S, r ∈ Q+,

r < f(n).
(iii) (a(a2 + 1S)

−1, n(2n − 1)−1S ) ∈ µS for all a ∈ S, n ∈ N.

Proof. Use 3.3, 3.5, 3.6 and 3.7. �

3.9 Lemma. νS 6= S × S.

Proof. If νS = S × S then S is a ring by 1.1(iii), a contradiction with 0 6∈ S. �
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3.10 Lemma. The following conditions are equivalent for a, b ∈ S:
(i) (a, b) ∈ ηS.
(ii) (a−1b, 1S) ∈ ηS.
(iii) There exist m,n ∈ N such that (m−1

S , a−1b) ∈ µS and (a
−1b, n−1

S ) ∈ µS.
(iv) There exist r, s ∈ Q+, r < s, such that (rS , a−1b) ∈ µS and (a

−1b, sS) ∈ µS.

(v) There exists k ∈ N, such that (2−k
S , a−1b) ∈ µS and (a

−1b, 2kS) ∈ µS.

Proof. Easy to check. �

3.11 Proposition. (i) ηS = idS if and only if S is additively idempotent.
(ii) ηS = S×S if and only if S is additively archimedean (and then S is additively

cancellative).
(iii) If A is a block of ηS, then A(+) is a cancellative subsemigroup of S(+).
(iv) (a, b) ∈ ηS if and only if a

−1b ∈ P = {c|(c, 1S) ∈ ηS}.
(v) Either P = {1S} (and then S is additively idempotent) or P is an additively

cancellative archimedean subparasemifield of S.

Proof. For (i),(ii),(iii) and (iv) see 1.6, 1.8, 1.9 and 3.10.
(v) To show that P is additively archimedean, it is enough to prove that (c, 1S) ∈

ηP for every c ∈ P . Let c + d = n1S and 1S + e = mc, where c ∈ P , d, e ∈ S,
n,m ∈ N. Put d′ = d + 1S and e′ = e + c. Then d′ + c = (n + 1)1S , 1S + d = d′,
e′+(1S+(m+1)d) = (m+1)n1S and 1S+(m+1)e = me′, hence d′, e′ ∈ P . Since
c+ d′ = (n+ 1)1S and 1S + e′ = (m+ 1)c, we get (c, 1S) ∈ ηP .
The rest follows from 1.5(i) and 1.8. �

3.12 Lemma. ηS = νS if and only if (2S , 1S) ∈ µS.

Proof. Easy to see. �

3.13 Lemma. The following conditions are equivalent:
(i) ρS = S × S.
(ii) a+ b = a for some a, b ∈ S.
(iii) (1S , 2S) ∈ ρS.
(iv) c = c+ 1S for some c ∈ S.
(v) 1S = 1S + d for some d ∈ S.
(vi) For all x ∈ S there exists y ∈ S such that x+ y = x.

Proof. Easy (use 1.14). �

3.14 Proposition. (i) If S is finitely generated as a semiring, then S is not ad-
ditively cancellative and S satisfies the equivalent conditions of 3.13.
(ii) The additive semigroup S(+) is not finitely generated.
(iii) If the multiplicative group S(·) has finite (Prüfer) rank, then S is additively

idempotent.

Proof. (i) Use 1.12(ii), 2.2(ii), 1.18 and 1.19.
(ii) Suppose S(+) is generated by {a1, . . . , an}. If S is additively idempotent

then S is finite, a contradiction with 2.1. Hence ρS = S×S by 2.2 and 1.19. There
are bi ∈ S, i = 1, . . . , n such that ai + bi = bi, by 1.14. Thus kai + bi = bi for every
k ∈ N ∪ {0} and i = 1, . . . , n. Put o =

∑

i bi. Then for every x =
∑

i kiai ∈ S,
ki ∈ N ∪ {0}, we get x+ o = o. Hence o+ o = o, a contradiction with Q+ ⊆ S.
(iii) The multiplicative group Q+(·) is a free abelian group of infinite rank. �
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4. More results on parasemifields

In this section, let S be a parasemifield that is not additively idempotent. Ac-
cording to 2.2(ii), the prime subparasemifield of S is a copy of Q+ and (without
loss of generality) we can assume that it is equal to Q+.

Put P = {a ∈ S|(a, 1) ∈ ηS}, Q = {a ∈ S|(a, r) ∈ µS for some r ∈ Q+},
R = {a ∈ S|(r, a) ∈ µS for some r ∈ Q+}. According to 3.11(v), P is additively
cancellative archimedean subparasemifield of S.

4.1 Lemma. The following conditions are equivalent for a ∈ S:

(i) a ∈ P .

(ii) a−1 ∈ P .

(iii) There exist m,n ∈ N such that (m−1
S , a) ∈ µS and (a, n−1

S ) ∈ µS.

(iv) There exist r, s ∈ Q+, r < s, such that (rS , a) ∈ µS and (a, sS) ∈ µS.

(v) There exists k ∈ N, such that (2−k
S , a) ∈ µS and (a, 2kS) ∈ µS.

(vi) a ∈ Q ∩ R.

Proof. See 3.10. �

4.2 Lemma. Let a, b, c ∈ S. If (a, b) ∈ µS, (b, c) ∈ µS and a, c ∈ P , then b ∈ P .

Proof. Use 4.1. �

4.3 Proposition. (i) Both Q and R are subsemirings of S.

(ii) Q ∩ R = P .

(iii) a ∈ Q if and only if a−1 ∈ R (i.e., R = Q−1).

Proof. Easy (use 4.1). �

4.4 Lemma. If a1, . . . , am ∈ S, m ∈ N are such that a1 + · · · + am ∈ Q, then
a1, . . . , am ∈ Q.

Proof. Obvious. �

4.5 Lemma. R+ S ⊆ R (i.e., R is an ideal of S(+)).

Proof. Obvious. �

4.6 Lemma. Let a ∈ S, k ∈ N. Then

(i) a ∈ Q if and only if ak ∈ Q.

(ii) a ∈ R if and only if ak ∈ R.

(iii) a ∈ P if and only if ak ∈ P .

Proof. (i) If ak ∈ Q then (ak, r) ∈ µS for some r ∈ Q+. We have r < sk for some
s ∈ Q+ and (ak, sk) ∈ µS . Then (a, s) ∈ µS by 3.1, and so a ∈ Q.

(ii) Similar to (i).

(iii) Combine (i), (ii) and 4.3(ii). �

Let a ∈ S. Denote Ka the subsemiring of S generated by Q+ ∪ {a}. Clearly,
Ka is the set of elements of the form r0 + r1a + r2a

2 + · · · + rmam,m ≥ 0, ri ∈
Q+ ∪ {0},∑ ri 6= 0.
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4.7 Lemma. Let a ∈ S, k ∈ N, g ∈ Ka. Then:

(i) a+ 1, (a+ 1)a−1, (ak + 1)a−1, a+ a−k ∈ R.

(ii) (a+ 1)−1, a(a+ 1)−1, a(ak + 1)−1, ak(ak+1 + 1)−1 ∈ Q.

(iii) g + a−1 ∈ R.

(iv) a(ag + 1)−1 ∈ Q.

Proof. (i) We have (1, a + 1) ∈ µS and (1, a
−1 + 1) = (1, (a + 1)a−1) ∈ µS . Thus

a+1, (a+1)a−1 ∈ R. Further, a−1+(a−1)−(k−1) = (ak+1)a−1 ∈ R and a+a−k ∈ R
by 3.3.

(iii) Let g =
∑

i∈I ria
i, I is a finite non-empty subset of N∪ {0}, ri ∈ Q+, i ∈ I.

Fix arbitrary j ∈ I. (aj+1 + 1)a−1 = aj + a−1 ∈ R by (i). Let r = min(1, rj).
Then (r(aj + a−1), rja

j + a−1) ∈ µS , and so rja
j + a−1 ∈ R. Then g + a−1 =

r
∑

i∈I\{j} ria
i + (rja

j + a−1) ∈ R by 4.5.

(ii), (iv) Use (i), (iii) and 4.3(iii). �

4.8 Proposition. QQ−1 = S = RR−1(= QR = RQ).

Proof. By 4.7, a(a + 1)−1 ∈ Q and a + 1 ∈ Q−1 = R for each a ∈ S. Thus
a ∈ QQ−1. �

4.9 Corollary. The following conditions are equivalent:

(i) Q = S (R = S, resp.).

(ii) Q = P (R = P , resp.).

(iii) Q (R, resp.) is a parasemifield.

(iv) P = S.

(v) P = Q = R = S.

4.10 Proposition. Q+Q+ = P .

Proof. We have Q+ ⊆ P ⊆ Q, Q is a semiring, and so Q + Q+ ⊆ Q. Clearly,
Q+Q+ ⊆ R by the definition of R. Thus Q+Q+ ⊆ Q ∩ R = P .

On the other hand, if a ∈ P then a = r + z for r ∈ Q+, z ∈ S ∪ {0} (because
a ∈ R). Put v = r/2+z. We have a ∈ Q, (v, a) ∈ µS , and so v ∈ Q by the definition
of Q. Hence a = v + r/2 ∈ Q+Q+. �

4.11 Corollary. (ra+ 1)a−1 ∈ P for all a ∈ R, r ∈ Q+.

4.12 Lemma. Let a ∈ S, k ∈ N, g ∈ Ka. Then the elements (a+ 1)(a+ 2)
−1, (a+

2)(a+ 1)−1, (ak + a+ 1)(ak + 1)−1, (ak + 1)(ak + a+ 1)−1, (ak+1 + ak + 1)(ak+1 +
1)−1, (ak+1+1)(ak+1+ak+1)−1, (ag+a+1)(ag+1)−1, (ag+1)(ag+a+1)−1 are
in P .

Proof. By 4.7(ii), (a+ 1)−1 ∈ Q, and hence (a+ 2)(a+ 1)−1 = (a+ 1)−1 + 1 ∈ P
by 4.10. The rest is similar. �

4.13 Lemma. Let a, b ∈ P and c ∈ S be such that b+a = c+a. Then b+b = c+b.

Proof. (a, b) ∈ ηS , and so a+ d = 2mb for some d ∈ S and m ∈ N. Then b+2mb =
c+ 2mb (see the proof of 1.8), and so b+ b = c+ b by 1.7. �
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4.14 Lemma. Let e ∈ S be such that 1 + e = 1. Then:
(i) e ∈ Q, e 6∈ P .
(ii) a+ e = a for all a ∈ P .
(iii) a+ be = a for all a, b ∈ P .

Proof. Clearly e ∈ Q. From a/2 + e + 1 = a/2 + 1 for all a ∈ P it follows that
a + e = a by 4.13. Consequently, ab + be = ab for all a, b ∈ P , thus c + be = c for
all b, c ∈ P .
If e ∈ P then e+ e = e, and so 2 = 1, a contradiction. �

4.15 Lemma. Let a, b, c ∈ Q be such that a+ b = a+ c. Then b+ r = c+ r for all
r ∈ Q+.

Proof. We have a′ = a + r ∈ P , b′ = b + r ∈ P , c′ = c + r ∈ P by 4.10. Since
a′ + b′ = a′ + c′ and P is additively cancellative, we get b′ = c′. �

4.16 Corollary. Let b, c ∈ Q. Then (b, c) ∈ ρQ if and only if b+ r = c+ r for all
r ∈ Q+.

4.17 Proposition. ρQ ↾ P = idP . In particular, ρQ 6= Q × Q.

Proof. If b, c ∈ P are such that (b, c) ∈ ρQ, then b+ 1 = c+ 1 by 4.16. Then b = c
by 3.11(v). �

4.18 Proposition. The semiring Q is not finitely generated.

Proof. The result follows as an immediate consequence of 1.19 and 4.17. �

4.19 Remark. Assume that the semiring S is generated by a finite set {x1, . . . , xm}
of its elements (m ∈ N).
(i) Nm

0 is clearly a subsemigroup of the cartesian power Zm and the additive

semigroup S(+) is generated by the set {xk1
1 · · ·xkm

m |(k1, . . . , km) ∈ Nm
0 }.

(ii) Put N = {(l1, . . . , lm) ∈ Nm
0 |xl1

1 · · ·xlm
m ∈ Q}. From 4.4 it follows eas-

ily that N 6= ∅ and that the additive semigroup Q(+) is generated by the set

{xl1
1 · · ·xlm

m |(l1, . . . , lm) ∈ N}.
(iii) Clearly, N(+) is a subsemigroup of Nm

0 (+). IfN(+) were a finitely generated
semigroup, Q would be a finitely generated semiring, a contradiction with 4.18.
Thus N(+) is not a finitely generated semigroup.
(iv) It follows easily from (iii) that m ≥ 2. Moreover, if m = 2 then x1 6= xu

2 ,
x2 6= xv

1, u, v ∈ Z (in particular, x1 6= x−1
2 ).

4.20 Remark. Let a ∈ S. Put Qa = Q ∩ Ka (Ka denotes the subsemiring of S
generated byQ+∪{a}). DenoteM = {k ∈ N0|ak ∈ Qa}. ThenM is a subsemigroup
of Z(+) and M = {0} if and only if Qa = Q+ and a 6∈ Q+(use 4.4 and 4.6(i)).
(i) Assume that M 6= {0}. If l is the smallest positive integer in M , then l = 1

by 4.6(i), and so M = N0. Then Qa = Ka by 4.4.
(ii) Assume that a−n ∈ Ka for some n ∈ N. Then a−n =

∑

ria
i, therefore

∑

ria
i+n = 1 ∈ Q, and a ∈ Q by 4.4 and 4.6(i). Hence a−1 =

∑

ria
i+n−1 ∈ Q and

a ∈ Q−1 = R. Thus a ∈ Q ∩ R = P and Qa ⊆ Ka ⊆ P .
(iii) Assume that the semiring S is finitely generated and Q ∪ R ⊆ Ka (i.e.

Ka = S by 4.8). Then a−1 ∈ Ka, and so Q = Qa = P by (ii). Consequently by
4.9, P = S, and so S is additively cancellative, a contradiction with 1.18.
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4.21 Corollary. Let S be a parasemifield that is 1-generated as a semiring. Then
S is additively idempotent.

Proof. Use 4.20(iii). �

4.22 Remark. (cf. 4.21) Every non-trivial finitely generated algebraic system has
at least one maximal congruence. Combining this well-known fact with 3.14(i) and
[1, 10.1], one easily concludes that, in fact, no parasemifield is a one-generated
semiring.
On the other hand, the parasemifield Z(⊕, ∗), where m ⊕ n = min(m,n) and

m∗n = m+n, is a two-generated parasemifield (it is generated by the set {−1, 1}).
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Conclusion

The thesis is concerned with the question whether every infinite (commutative)
semiring that is finitely generated and ideal-simple is additively idempotent.
Hence, in Chapter II we studied such semirings. Using the characterization of

ideal-simple semirings and the properties of related parasemifields and semifields,
we reduced the problem to the question whether every parasemifield that is finitely
generated as a semiring is additively idempotent.
To answer this question, in Chapter III we studied various properties of parasemi-

fields. From them we were able to prove the hypothesis for 1-generated parasemi-
fields.
The problem remains unsolved in general case. However, results in section III.4

related to the semiring Q seem to sugest a way of proceeding in the case with more
generators via the study of subsemigroups of Nm

0 (see remark III.4.19). In this way
we were already able to prove the hypothesis in 2-generated case – see [4] and [6]
for details.
For further information about semirings, the reader can consult [1] or [2].
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