Large convex independent subset in sum of two point sets Ondřej Bílka
Department of Applied Mathematics
Charles University
Malostranské Nám. 25
11800 Praha 1, Czech Republic
neleai@seznam.cz

1 Abstract

We answer question of Eisenbrand, Pach, Rothvoss and Sopher if the sum of two finite point sets in the plane can have superlinear convex independent set. We show a construction which gives us convex independent sets with size which is asymptotically tight.

2 Introduction

Halman et al. [2] studied maximal number $E(n)$ of edges between n points in the plane such that their midpoints form a convex independent set. They asked if $E(n)$ is linear or quadratic.

Motivated by this question Eisenbrand et al. [1] studied a more general question: What is the maximal size $M(m, n)$ of convex independent subset of $P+Q,|P|=m,|Q|=n$?

This directly relates to previous question because we can write set of midpoints of P as $1 / 2(P+P)$. If we have convex independent set in $P+Q$ then midpoints of $2 P(\cup Q)$ contain this set too. Eisenbrand at al. showed the following upper bound on the maximum size of convex independent set:

$$
M(m, n)=O\left(m^{2 / 3} n^{2 / 3}+m+n\right)
$$

They mentioned they don't know any superlinear lower bound of $M(m, n)$. We will prove that when $m=n$ their bound $M(n, n)=O\left(n^{4 / 3}\right)$ is tight.

Theorem 1. For every $n=m^{2}$ (where m is an integer) there exist sets J and K of size $|J|=|K|=n$ such that the sum $J+K$ contains a convex independent subset of size $\Omega\left(n^{4 / 3}\right)$.

3 Definitions

By the sum $A+B$ of planar point sets A and B we mean the set $\{a+b \mid a \in$ $A, b \in B\}$.
By direction $\operatorname{dir}(v)$ of a vector $v=(x, y), x \neq 0$, we mean the ratio $\operatorname{dir}(v)=y / x$. Let G be the square grid $G=\{(i, j) \mid i, j \in\{1,2, \ldots, m\}\}$.
We call $L \subset G$ a line in G if there exists a line l such that $L=l \cap G$. We restrict ourselves to lines in G with direction $0<\operatorname{dir}(l)<1$.

We call a set $U \subset R^{2}$ a cup if U is a subset of the graph of a convex function. Let z be the mapping $z(x)=\epsilon 3^{x}$, where ϵ is choosen to satisfy $z\left(m^{2}+m\right)<$ $1 / m^{2}$.
Let $\phi: R^{2} \rightarrow R^{2}$ be mapping $\phi(i, j)=(i, j+z(m i+j))$.
Observe ϕ is direction preserving in this sense:
(1) If $a, b, c, d \in G$ and $0<\operatorname{dir}(b-a)<\operatorname{dir}(d-c)<1$ then $\operatorname{dir}(\phi(b)-\phi(a))<$ $\operatorname{dir}(\phi(d)-\phi(c))$.

4 Proof of Theorem 1

Proof. We put $K:=\phi(G)$ and describe J implicitly. The sum $J+K$ consists of n shifted copies of K. Take the set S of n lines of G with largest sizes. For any direction a / b consider the set $S_{a / b}$ of lines from S with direction a / b.

Claim 1. For any direction $a / b \in(0,1)$ there exists a mapping $t: S_{a / b} \rightarrow R^{2}$ such that the set $U_{a / b}=\bigcup_{L \in S_{a / b}} \phi(L)+t(L)$ is a cup. Moreover no two points of $U_{a / b}$ coincide.
Proof. First we define linear mapping $f: R^{2}->R^{2}$ such that

$$
f(x, y)=\left(a \frac{m x+y}{m a+b}, b \frac{m x+y}{m a+b}\right) .
$$

For any line $L \in S_{a / b}, f(L)$ is a translation of L which follows from $f(a, b)=$ (a, b).

Now observe that for any $x, y \in R$

$$
\phi(x, y)-(x, y)=(0, z(m x+y))=\phi(f(x, y))-f(x, y) .
$$

Thus, $\phi(f(L))$ is the translation of $\phi(L)$ we seek. The image of ϕf coincides with the graph of the convex function $y=b / a x+\epsilon 3^{(m+b / a) x}$. Therefore $U_{a / b}$ is a cup. No two points of $U_{a / b}$ coincide because $m x+y$ restricted to G is an injective mapping.

Now let $U_{1}, U_{2}, \ldots, U_{k}$ be the sets $U_{a / b}$ sorted by increasing direction. We shift these sets in such a way that the rightmost point of U_{i} coincides with the leftmost point of U_{i+1}. Then the set $U_{1} \cup \ldots \cup U_{k}$ is a cup due to (1).

Now we need to estimate the size of this set. For direction a / b the set $U_{a / b}$ has $\frac{b m}{2}$ lines starting at $(i, j), 0 \leq i<n / 2,0 \leq j<b$. Each of these lines has at least $\frac{m}{2 b}$ points. Since the number of divisors of b is at most $b / 2$ the number of directions with given b is at least $\frac{b}{2}$. The number of lines we use is at most $\sum_{b=1}^{k} 1 / 2 \sum_{a=0}^{b}\left|U_{a / b}\right|=1 / 2 \sum_{b=1}^{k} \frac{b}{2} \frac{b m}{2}$. Set $k=m^{1 / 3}$ to ensure we
use less than $n=m^{2}$ lines. The number of points on these lines is at least $\sum_{b=1}^{k} \frac{m}{2 b} b / 2 \frac{b m}{2}=\sum_{b=1}^{m^{1 / 3}} b m^{2} / 8=\Omega\left(m^{2 / 3} m^{2}\right)=\Omega\left(n^{4 / 3}\right)$.

References

[1] F. Eisenbrand, J. Pach, T. Rothvoss, and N. B. Sopher: Convexly independent subsets of the Minkovski sum of planar point sets, Electronic J Comb. 15 (2008) \#N8.
[2] N. Halman, S. Onn, and U. G. Rohtblum: The convex dimension of a graph Discrete Applied Math. 155 (2007), 1373-1383.

