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Abstract

In this work we explore a particular structural property of graphs. Every graph
defines a finite discrete metric space with its vertices as points and with metric
being the distance of vertices. The notion of lines from Euclidean space is
extended to this metric: a line defined by two points contains all the points
satisfying the triangle equality. V. Chvátal extended a particular theorem from
the euclidean plane to this metric. W. Klee and S. Wagon later conjectured,
that a discrete metric space with n points either contains n different lines, or
one line containing all of the points. We show several results about lines in
graph metric spaces related to this conjecture.

First, we describe the structure of lines defined by a pair of adjanced and non-
adjanced vertices. We show several results about lines containing all the points
in a graph, so called “universal lines”. These lines are strongly related to cuts
and separators in a graph. We give formulas to calculate the number of different
lines for several graph classes: cycles, trees, complete k-partite graphs. Then
we use them to show several examples of graphs where every line is different. A
complete graph is one such example.

Further, we prove that for any given integer k, there exist only finitely many
graphs with exactly k different lines without a universal line. There exist in-
finitely many graphs with exactly k different lines, if and only if there exists at
least one such a graph containing a bridge.

We also describe the problem of reconstructing a graph from a list of its
lines. This is not always possible, as there exist different graphs with the same
line structure. However, we can solve this problem for certain graphs, such as
trees.

Last, we consider a generalization of the problem for weighted graphs, which
are equivalent to finite discrete metric spaces. We will see that many of our
results hold even in this general case.



Chapter 1

Introduction

1.1 Motivation in geometry

Let us introduce the problem with a short motivation in geometry and an open
problem which inspired our research. In March 1893, J. J. Sylvester [1] proposed
the following problem:

Prove that it is not possible to arrange any finite number of real
points so that a right line through every two of them shall pass
through a third, unless they all lie in the same right line.

The problem was solved about forty years later by T. Gallai and it is known
as the Sylvester–Gallai theorem. More information about this theorem can be
found in Chvátal [2].

In the same article Chvátal considered a generalization of this theorem for
finite discrete metric spaces. This generalization, also known as the Sylvester–
Chvátal theorem, was proven by Chen [3] a year later. However, in this article
we consider a more natural definition of a line for metric spaces induced by
graphs. Using this definition the Sylvester–Chvátal theorem does not hold. We
will later show that the circle C5 is a simple counterexample.

A related theorem proven by de Bruijn and Erdős [4] states:

Theorem 1.1 (de Bruijn and Erdős, 1948). Let S be a set of n points in the

euclidean plane. Then either

(1) there exists a line that contains all points in S, or

(2) the points determine at least n different lines.

This is not unexpected. If all the points are collinear, they define exactly one
line passing through all of them. Otherwise, we can find many different lines. If
the points are in general position, every pair of points defines a unique line,

(

n
2

)

different lines in total. The lower bound for the number of different lines if not
all of the points are collinear can be achieved, as shown in the following figure.
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Figure 1.1: A positioning of n points defining exactly n different lines.

Can this theorem be extended to finite discrete metric spaces as well? This
question was asked by Klee and Wagon in Section 6 (Points on Lines) of [5]. In
this work, we consider the metric space defined by a simple graph. We show
many interesting properties of lines in a graph and prove several results closely
related to this problem.

1.2 Metric space and lines in a graph

Unless explicitly stated otherwise, throughout the work we consider only simple
unoriented connected graphs. We assume knowledge of basic notions and nota-
tion of graph theory, such as the complete graph Kn or the circle Cn. Unless
stated otherwise, G denotes a graph, V denotes the set of its vertices and E
denotes the set of its edges.

We define the metric space induced by a graph G = (V,E) as follows:

Definition 1.2 (Graph metric space). Let G be a simple connected graph. A

graph metric space for G is a metric space (V, d) such that

• V = V (G), points are vertices of G.

• d(u, v), where u, v ∈ V , is the distance of vertices u and v in G, defined

as the number of edges on the shortest path from u to v.

It is easy to see that this indeed satisfies the definition of a metric space.
For a given metric space we define a line as follows:

Definition 1.3. Let (X, ρ) be a metric space. For each a, b ∈ X, a 6= b we

define the line
←→
ab as:

←→
ab = {x |ρ(x, a) + ρ(a, b) = ρ(x, b) ∨ (1.1)

∨ ρ(a, x) + ρ(x, b) = ρ(a, b) ∨ (1.2)

∨ ρ(a, b) + ρ(b, x) = ρ(a, x)} (1.3)
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In another words, points belonging to the line
←→
ab are points satisfying the

triangle equality with a and b. Two lines are considered the same (equal, iden-
tical...) if they contain the same sets of points. Note that the points a and b

always lie on the line
←→
ab , and that the line

←→
ab is always equal to the line

←→
ba .

A generalization of the de Bruijn-Erdős theorem for finite discrete metric
spaces follows.

Conjecture 1.4 (V. Klee and S. Wagon [5]). Let (S, ρ) be a finite discrete

metric space, such that |S| = n. Then either

(1) there exists a line containing all the points in S, or

(2) there exist at least n different lines defined by points in S.

If there is a line containing all the points in S, we will call such a line
universal line.

Note the difference from Theorem 1.1 for the euclidean plane. For instance,

in the euclidean plane any two points lying on a line
←→
ab define the same line as

←→
ab . In a general metric space this does not need to hold.

1.3 A simple example

Let us illustrate the definitions with a simple example graph.

c

d

a

b

e

Figure 1.2: An example graph.

First, consider the line
←→
ab . The point d lies on

←→
ab , as it satisfies condition

(1.1) from the definition. Similarly, the point c satisfies (1.3). However, the

point e does not satisfy either of the conditions, therefore it does not lie on
←→
ab .

We can also see that a and b satisfy all of the conditions. It is obvious that a

line always contains the two points defining it. Therefore,
←→
ab = {a, b, c, d}.

In the same way one can deduce that
←→
bc =

←→
cd =

←→
da =

←→
ab , that

←→
ae =

←→
ec =

{a, e, c}, similarly
←→
be =

←→
ed = {b, e, d}, and finally

←→
ac =

←→
bd = {a, b, c, d, e}.

Lines
←→
ac and

←→
bd are universal, therefore the graph satisfies Conjecture 1.4.

We will soon show easier ways to determine whether a given point lies on a
given line.

3



Chapter 2

Basic Results

In this chapter we introduce basic observations about the structure of different
lines in graphs.

2.1 Line structure

A line
←→
ab induces four important subsets of V .

Definition 2.1 (Subsets induced by a line). Let
←→
ab be a line in a graph. Then

we define:

a-part = {x | d(x, a) + d(a, b) = d(x, b)}

ab-part = {x | d(a, x) + d(x, b) = d(a, b)}

b-part = {x | d(a, b) + d(b, x) = d(a, x)}

∅-part = V \
←→
ab

Each subset corresponds to a single condition defining the line, the ∅-part
are vertices not belonging to the line. An example:

Note that the vertices a and b belong in both ab-part and a-part or b-part
respectively. If we specifically want to exclude those points, we will talk about
proper parts.

Definition 2.2 (Proper parts of a line).

a+-part = a-part \ {a}

ab+-part = ab-part \ {a, b}

b+-part = b-part \ {b}

We also say that a vertex c is an inner point of the line
←→
ab , if c ∈ ab-part

and that it is an outer point of the line, if c ∈ a-part or c ∈ b-part. Similarly,
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a b
ab-part

a-part
b-part

∅-part

Figure 2.1: Four subsets ∅-part, a-part, b-part and ab-part.

proper inner points and proper outer points are inner (or outer) points other
than the vertices a and b.

First we give two observations about inner and outer points and their con-
nection to shortest paths in the graph. We introduce the notion of betweenness:

Definition 2.3 (Betweenness). For three vertices a, b, c ∈ G we say that the

vertex b lies between vertices a and c, and we write [abc], if there exists a shortest

path in G from the vertex a to the vertex c, such that this path contains the

vertex b.

Similarly, we will write [v1v2 . . . vn] if there exists a shortest path from v1

to vn such that this path contains the vertices v2, v3, . . . vn−1 in this order.
Naturally, this path may contain other vertices as well.

Observe that if [v1v2 . . . vn], then for every i, j, k with 1 ≤ i ≤ j ≤ k ≤ n,
[vivjvk] must hold. Second, observe that if [abc] and [acd], then [abcd] must
hold as well.

Observation 2.4 (Inner points). Point c is an inner point of a line
←→
ab iff [acb].

Proof. Any point c on the shortest path from a to b satisfies d(a, c) + d(c, b) =

d(a, b). To prove the other implication, let c be an inner point of
←→
ab . Consider

the shortest path from a to c, and the shortest path from c to b. Joining them

together we create a path with length l = d(a, c) + d(c, b) = d(a, b), therefore it

is a shortest path from a to b.

Observation 2.5 (Outer points). Point c is an outer point of the line
←→
ab , iff

[cab] or [abc].

Proof. Analogous to the previous observation.

Lemma 2.6 (Shortest path). Point c lies on the line
←→
ab iff [cab] or [acb] or

[abc].

Proof. A direct consequence of the previous two observations.
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This lemma is very useful in determining whether a point lies on a line. We
will refer to it as the Shortest Path lemma.

Corollary 2.7 (Triangle). Let a, b and c be three points. Then either

(1) a ∈
←→
bc , b ∈

←→
ac and c ∈

←→
ab

(2) or a /∈
←→
bc , b /∈

←→
ac and c /∈

←→
ab .

a

b

c

Figure 2.2: Vertices a, b and c create a triangle.

If the first case holds, we will call the points a, b, c collinear. Note that
this relation does not need to be transitive. However, if three points are not
collinear, they define three different lines.

Lemma 2.8 (Properties of line parts). For each line
←→
ab the following holds:

(1) Each of the subgraphs induced by a-part, b-part and ab-part is connected.

(2) The subgraph induced by all vertices belonging to the line is also connected.

(3) No vertex of the graph, except for a and b, belongs to two different parts.

Proof. First, consider the a-part for example. Let c be a vertex in a-part. By

Observation 2.5
←→
cab. However, this must also hold for any vertex d on the

shortest path from c to a. Therefore, the entire path from c to a belongs to

a-part. This holds for any c in the a-part, therefore the a-part is connected.

The proof for other parts is similar.

The second statement is obvious, as each of the parts is connected, a connects

a-part and ab-part and b connects ab-part and b-part. Note that the ∅-part does

not have to be connected.

Last, recall the definition of line parts. Consider a vertex c on the line
←→
ab ,

and the three distances d(c, a), d(a, b) and d(b, c). If c belongs to the a-part,

d(c, b) is the maximum of the three. Moreover, if c 6= a, d(c, a) ≥ 1 and d(c, b)

is a strict maximum. Similarly, if c is in ab-part and it is not a or b, the strict

maximum is d(a, b). And if c is in b-part, c 6= b, the strict maximum is d(a, c).

We can see that for no such c two of those can hold at the same time.

2.2 Distinguishing of lines

Here we show several ways to show that two lines are different. We have already
seen that if three points are not collinear, they define three different lines. We
will show a similar result about so-called distance subgraph.
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Definition 2.9. Graph H is a distance subgraph of a graph G, if H is a subgraph

of G and for every a, b ∈ VH is dH(a, b) = dG(a, b).

The metric defined by H is a restriction of the metric defined by G. Also, if a
subgraph of G is a complete graph, it is also a distance subgraph—the distance
between any two points is 1 in either graph.

Lemma 2.10 (Distance subgraphs). Let H be a distance subgraph of G. Then

for each a, b, c ∈ VH c ∈
←→
ab in H iff c ∈

←→
ab in G.

Proof. The distances between a, b and c are equal in H and in G, therefore if c

satisfies one of the equalities in the line definition in H, it must satisfy it in G,

and vice versa.

Corollary 2.11. Let H be a distance subgraph of G. Then G contains at least

as many different lines as H.

Proof. Every two lines different in H must be different also in G. Note that if

two lines are equal in H, they do not need to be equal in G—there might be a

vertex in G, but not in H, which distinguishes them.

Corollary 2.12. Let G be a triangle-free graph with a maximum degree of

∆(G) ≥ 3. Then G contains at least
(

∆(G)
2

)

+ 1 different lines.

Proof. Let a be a vertex with the maximal degree and let us denote its neighbors

b1, b2, . . . , b∆(G). If G is triangle-free, there is no edge between two vertices bi

and bj . Therefore the subgraph H induced by {a, b1, b2, . . . , b∆(G)} is a distance

subgraph. Let us count the number of lines in H.

First, we can see that every line
←→
abi contains all vertices of the subgraph H

since the shortest path from bj to bi is bjabi. Second, every line
←→
bibj contains

only the points bi, a and bj . Therefore, the lines
←→
bibj are pairwise different. By

choosing i and j from 1 to ∆(G), we obtain
(

∆(G)
2

)

different lines. The line
←→
abi

is different from all of them. By the previous corollary, the graph G must have

at least
(

∆(G)
2

)

+ 1 lines.

2.3 Edge lines

We will soon show that, compared to the general case, the line structure is much
simpler if the two vertices defining a line are connected by an edge. We will call
such lines edge lines and all other lines long lines. Edge lines do not contain
any proper inner points.

Observation 2.13 (Edge Lines). Let
←→
ab be an edge line. Then

←→
ab contains

exactly those points c for which d(a, c) 6= d(b, c).
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Proof. Note that since ab is an edge, for any c holds that |d(a, c)− d(b, c)| ≤ 1.

Let c be a point on the line
←→
ab . It must be an outer point, therefore either

d(c, a) + d(a, b) = d(c, b) or d(c, b) + d(b, a) = d(c, a). In either case d(a, c) 6=

d(b, c).

If d(a, c) 6= d(b, c), then d(b, c) = d(a, c)± 1, and d(a, b) = 1, therefore either

d(c, b) = d(c, a) + d(a, b) or d(c, b) + d(b, a) = d(c, a). In either case c ∈
←→
ab .

Lemma 2.14. Let
←→
ab be an edge non-universal line. Then there exists an odd

cycle containing a and b.

Proof. Consider a point c, such that c /∈
←→
ab , and that d(a, c) is minimal. Since

←→
ab is an edge line, d(b, c) = d(a, c). Then the shortest paths ac and bc must be

disjoint, otherwise there exists a vertex d on both of the paths. The distances

d(a, d) and d(b, d) must be equal. However, that means d /∈
←→
ab , which is in

contradiction with the minimality of d(a, c).

Therefore, the paths ac, cb and the edge ba form an odd cycle.

Corollary 2.15. Each edge line in a bipartite graph is a universal line.

Proof. If the graph is bipartite, it does not contain any odd cycles. Therefore

every edge defines a universal line.

A result not unlike the converse of the previous Lemma 2.14 holds.

Proposition 2.16. Let graph G contain an odd cycle a1a2 . . . ak. Then for each

vertex c, there exists an edge aiai+1 of the cycle such that c /∈
←−−→
aiai+1.

(Naturally, if i = k, we define ai+1 to be a1.)

Proof. For a contradiction assume that there is a vertex c such that for each

edge aiai+1 the vertex c lies on the line
←−−→
aiai+1.

Since c ∈
←−−→
aiai+1, we have d(c, ai) 6= d(c, ai+1). This means that d(c, ai+1) =

d(c, ai)+1 or d(c, ai+1) = d(c, ai)−1, that it, the parity of d(c, ai+1) is different

from the parity of d(c, ai). Thus the parity of distances of the vertex c from

vertices a1, a2, . . . , ak alternates between odd and even. However, if this holds,

then the circle must be even, which is a contradiction.

Let us consider a complete graph Kn. Each line
←→
ab in this graph is an edge

line. Moreover, for every c 6= a, b we have d(a, c) = d(b, c) = 1, and so this line
contains only the points a and b. Therefore, all the lines in the graph Kn are
pairwise different, so Kn contains

(

n
2

)

different lines.

Corollary 2.17. Every graph G with a maximal complete subgraph of size ω(G)

contains at least
(

ω(G)
2

)

different lines.

Proof. Recall Lemma 2.10 on distance subgraphs. Each complete subgraph is

also a distance subgraph, therefore the corollary holds.
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2.4 Long lines

Recall that we call a line
←→
ab long line, if ab is not an edge. The structure of

long lines is somewhat different from edge lines. Consider a long line
←→
ab . We

will call the subgraph induced by its inner points layer subgraph. The vertices
are divided into layers according to their distance from a. Note that we can
interchangeably use distance from b; if two inner points have equal distance
from a, they must also have equal distances from b.

We can see that edges can exist only between vertices in two consecutive
layers, or between vertices in the same layer. We will call the latter ladder
edges.

a b

Figure 2.3: An example of a layer subgraph.

Lemma 2.18 (Unconnected parts). Let
←→
ab be a long line. Then there exists

no edge between a+-part and ab+-part, and no edge between a+-part and b-part.

Similarly for b+-part.

Proof. Let c be a vertex in a+-part and let d be a vertex in ab+-part. For a

contradiction, assume that cd is an edge. From the definition of proper parts,

we can see that d(d, b) < d(a, b) < d(c, b). However, d(c, d) = 1, therefore

|d(d, b)− d(c, b)| is at most 1. This gives a contradiction.

If c ∈ a+-part, then d(c, b) = d(c, a) + d(a, b) > 1. Therefore, there can be

no edge between a vertex in a+-part and the vertex b.

Now, let c be a vertex in a+-part and let e be a vertex in b+-part. For

a contradiction, assume that ce is an edge. Without loss of generality, let

d(a, c) ≤ d(b, e). From the definition of parts, and because ab is not an edge,

we get:

d(a, e) = d(a, b) + d(b, e) > d(b, e) + 1

However, since ce is an edge, by the triangle inequality it also holds that:

d(a, e) ≤ d(a, c) + d(c, e) ≤ d(b, e) + 1

This again gives a contradiction.

Note that this lemma does not hold in general for edge lines.
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Chapter 3

Cuts, Separators, and

Universal Lines

Cuts and separators are natural structures in graph theory. In this chapter, we
will prove some result on the existence of an universal line in a graph and we
will show their close connection with cuts and separators.

A cut is in general a set of edges that divides a graph into two or more
components. For a set of vertices A, with ∅ 6= A 6= V , a fundamental cut CA is
uniquely defined by the set A, and consists of all edges that go between A and
V \ A, that is, of all edges e, for which |e ∩ A| = 1. All cuts considered in this
chapter are fundamental cuts.

3.1 Bridges

Let us start with the simplest cut—a bridge. A bridge defines an edge line. We
will show that each such line is universal.

Observation 3.1 (Bridge universality). Each edge line defined by a bridge is

a universal line.

Proof. Let ab be a bridge defined by a set of vertices A. Let B = V \A. Without

loss of generality, let a ∈ A, b ∈ B. Let c be a vertex in A. Note that ab is

the only edge connecting A and B, therefore every path from c to b must go

through a. By the Shortest Path lemma, c ∈
←→
ab .

Similarly, for each vertex d in B, the shortest path from d to a goes through

b.

Another property of bridges is that subdividing a bridge does not signifi-
cantly change the structure of the lines in a graph.

10



a b
c d

A B

Figure 3.1: A bridge ab defines a universal line.

Theorem 3.2 (Bridge pumping). Let ab be a bridge in the graph G defined by

a set of vertices A. Let B = V \ A. Let G′ be a graph obtained by subdividing

the edge ab with a new vertex c. Then the following holds:

(1) Each line
←→
xy in G contains the same set of points in G and in G′, only

in G′ it may additionaly contain the point c.

(2) Every two lines that are equal in G are also equal in G′.

(3) Each line cx in G′ is equal to some line defined only by vertices of G.

a

b

a

b
c

subdividing

Figure 3.2: Subdividing of the bridge ab with the vertex c.

Proof. (1) First, observe that for every three vertices x, y, z ∈ G the relation

[xyz] is not changed after subdividing a bridge. Together with the Shortest

Path lemma this gives that z ∈
←→
xy in G if and only if z ∈

←→
xy in G′.

(2) If the line
←→
xy in G contains both vertices a and b, we now know that it

contains them in G′ as well. By Lemma 2.8, the line is connected, therefore it

must contain c as well. If
←→
xy contains neither a nor b, we can similarly see that

it can not contain c, otherwise the line would not be connected.

So let the line
←→
xy contain exactly one of the vertices a and b, without loss

of generality, let it contain a. The line has to be connected, therefore both x

and y must be in A. We can see that [xcy] cannot hold, therefore c is not an

inner point of
←→
xy . Now assume that c is an outer point of the line, and let, for

example, [xyc]. However, cb is a bridge, and therefore also [xycb]. But then b

lies on the line
←→
xy , which is a contradiction.

We see that c lies on the line
←→
xy in G′ if and only if

←→
xy in G contains both

a and b. Therefore, two equal lines
←→
xy and

←→
uv either both contain c in G′ or

none of them does. We have already seen that they can not differ in G′ by any

other points.

(3) Consider a line
←→
xc in G′, without loss of generality let x ∈ A. We are

going to show that
←→
xc =

←→
xb .

11



First, note that for each vertex y ∈ B, both [xcy] and [xby] hold. Therefore,

both lines contain all of the vertices in B. Now let z ∈ A be an inner point

of
←→
xc . This means that [xzc], but because cb is a bridge, it also holds that

[xzcb], and therefore z lies on the line
←→
xb as well. Observe that the converse

also holds: If z is an inner point of
←→
xb , then [xzb], and naturally also [xzcb],

and then z ∈
←→
xc .

Similarly, if z is an outer point in x-part, we can see that [zxc] if and only

if [zxb]. Therefore, every point of the line
←→
xc is a point of the line

←→
xb , and vice

versa.

Corollary 3.3. Subdividing a bridge does not change the number of different

lines in a graph.

3.2 Cuts

We now show several results about general cuts and their connection with uni-
versal lines.

Lemma 3.4 (Cut union). Let CA be a fundamental cut. Then
⋃

uv∈CA

←→
uv = V.

Proof. We are going to show that for each vertex a ∈ G, there exists an edge

uv of the cut CA such that a ∈
←→
uv .

Without loss of generality, let a ∈ A. Consider the shortest path form a to

any vertex not in A. This path must pass through at least one edge uv of the

cut. But we see that [auv], therefore a ∈
←→
uv .

Corollary 3.5. Let k be the size of the minimal cut in the graph G, that is,

the cut with minimal number of edges. Then there exists a line in the graph G

containing at least |V |
k points.

Proof. Assume the corollary does not hold. Then the cut defines k edge lines,

each containing less than |V |
k points. However, this is not enough for their union

to contain all of the vertices in the graph G.

Note that if the graph contains a bridge, k = 1 and there is a line with
|V |
1 = |V | points—an universal line.

Let the line
←→
ab be an edge universal line. Consider the cut defined by a-part

of the line. We will call this cut a universal cut.

Proposition 3.6 (Universal cuts). Let ab be an edge of the graph G. The edge

line
←→
ab is universal if and only if there exists a cut CA such that ab ∈ CA and

for each edge cd ∈ CA is d(a, c) = d(b, d). Moreover, for a given edge line
←→
ab ,

this cut is defined uniquely by A = a-part.

12



a b

c d

c′ d′

k k

l l

a-part b-part

Figure 3.3: A universal cut defined by the edge universal line
←→
ab .

Proof. Let the line
←→
ab be an edge universal line, and let CA be a cut defined by

A = a-part of the line. Let B = V \ A. The line
←→
ab is an edge universal line,

therefore ∅-part = ab-part = ∅, and B = b-part of
←→
ab . Let cd be an edge of the

cut CA, such that c ∈ A and d ∈ B.

By the triangle inequality, it holds that

d(a, d) ≤ d(a, c) + d(c, d) = d(a, c) + 1.

The vertex d belongs to the b-part, therefore

d(a, d) = d(a, b) + d(b, d) = d(b, d) + 1.

Hence:

d(b, d) ≤ d(a, c).

Similarly:

d(b, c) ≤ d(b, d) + d(d, c) = d(b, d) + 1,

d(b, c) = d(b, a) + d(a, c) = d(a, c) + 1,

d(a, c) ≤ d(b, d).

Therefore d(a, c) = d(b, d).

Conversely, let CA be a cut defined by a set of vertices A, and let ab be one

of its edges, such that for each edge cd ∈ CA, the equality d(a, c) = d(b, d) = k

holds.

Consider a vertex x, without loss of generality, let x ∈ A. Consider the

shortest path xb. This path needs to cross one of the edges of CA, let us denote

the edge cd, c ∈ A, d /∈ A. Consider the path x−c−a−b. Since d(c, a) = d(d, b),

13



a b

c d

k k
x

a-part b-part

a b

c d

k k
x

a-part b-part

flip

Figure 3.4: The paths x− c− d− b and x− c− a− b are equally long.

this path is as long as the path x− c− d− b, therefore it is a shortest path as

well. This gives [xab], and from that, x ∈
←→
ab . Similarly if x ∈ V \A.

Finally, we prove that for a given edge universal line
←→
ab , there exists only

one cut with the desired properties. Let CA be such a cut defined by a set of

vertices A, and let B = V \ A. Exactly as above, we can show that for every

x ∈ A, the relation [xab] holds, therefore x ∈ a-part. Similarly, for every y ∈ B,

[aby] holds, and so y ∈ b-part. The line
←→
ab is a universal edge line, therefore

the ∅-part and ab-part are empty. This gives A = a-part and B = b-part.

3.3 Articulations

Lemma 3.7 (Articulation). Let the vertex c separate the graph G into two parts

A and B. That is, let A ∪ B ∪ {c} = V , A ∩ B = ∅ and no edge connects a

vertex in A with a vertex in B. Let a and b be two different vertices in A. Then

the following statements are equivalent:

(1) The line
←→
ab contains all vertices in B.

(2) The line
←→
ab contains a vertex d, d ∈ B.

(3) The vertex c is an outer point of the line
←→
ab .

a

b

c
d

P

Figure 3.5: Articulation c separates A and B.

Proof. (1) →(2): Trivial.
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(2) →(3): Obviously, d is not an inner point of the line
←→
ab . Since each of the

outer parts of the line is connected, the vertex c must be in the same part as d,

therefore it is an outer point as well.

(3) →(1): Without loss of generality, let c ∈ b-part. Then [abc] holds. Since

c is an articulation, for every d ∈ B must hold [acd]. Therefore, [abcd] holds,

and d ∈
←→
ab .

Lemma 3.8. Let the vertex c separate the graph G as in the previous lemma.

Let vertices a, b belong to A, and let d belong to B. Then the lines
←→
ad and

←→
bd

are equal on vertices in B, that is,
←→
ad ∩B =

←→
bd ∩B.

Proof. Let x ∈ B be an inner point of the line
←→
ad . Therefore it holds that

[acxd]. But since c is an articulation, the shortest paths ad and bd must contain

the same path between c and d. Then it must also hold that [bcxd], and x is an

inner point of
←→
bd .

Now let y ∈ B be an outer point of
←→
ad , therefore [acdy]. Similarly, [bcdy]

holds as well and y is an outer point of
←→
bd .

Analogously we prove that all vertices of the line
←→
bd in B belong also to the

line
←→
ad .

Now we show several observations on the structure of lines in a graph with
an articulation, based on the lines in each of its subgraphs separated by the
articulation.

Definition 3.9 (Graph join). Given two graphs G and H, we will call a graph

F join of graphs G and H, denoted by F = G ·H, if

• F is separated by a vertex v into two parts, G′ and H ′, as in the previous

lemma.

• G is a subgraph of F induced by G′ ∪ {v}.

• H is a subgraph of F induced by H ′ ∪ {v}.

Note that both G and H are distance subgraphs of G ·H, see Definition 2.10.
For the following observations, consider two graphs G and H, and their join

G ·H separated by a vertex c.

Observation 3.10. Let the line
←→
ab be a universal line in G, such that c is its

outer point. Then the line
←→
ab is universal even in G ·H.

Proof. Line
←→
ab is universal in the distance subgraph G, therefore it contains all

the vertices of G even in G ·H. The vertex c is its outer point, therefore by the

previous lemma 3.7 the line contains all vertices of H as well.

Observation 3.11. Let a, b be different vertices in G, and let d, e be different

vertices in H, such that the line
←→
ab is either not universal in G, or the vertex

c is not its outer point.

Then the lines
←→
ab and

←→
de are different in G ·H.

15



Proof. First, assume that the line
←→
ab is not universal in G. If the line

←→
de in

G ·H does not contain either of the vertices a or b, it is trivially different from

the line
←→
ab . If

←→
de contains both a and b, it must contain at least one point of

G different from c. By the previous lemma 3.7, it contains the entire G. Since

we assumed that
←→
ab is not universal in G, there is at least one vertex of G not

in
←→
ab but in

←→
de .

Second, assume that the vertex c is not an outer point of the line
←→
ab . By

the previous lemma, the line
←→
ab does not contain any point of H different from

c. Therefore it can not contain both d and e, so it is clearly different from the

line
←→
de .

Observation 3.12. Let the graph G contain k different lines and let the graph

H contain ℓ different lines. Then the graph G · H contains at least k + ℓ − 1

different lines.

Proof. Consider only lines defined by a pair of points in the same subgraph (G

or H). Since G and H are distance subgraphs, two different lines defined by

points in the same subgraph must be also different in G · H. The lemma 3.7

shows that any line defined by points in G is different from any line defined by

points in H, except for the case when both are universal lines with c as an outer

point. However, each graph can have only one universal line, therefore at most

one such pair exists.

To sum up, if we consider all the lines defined in G and all the lines defined

in H, we get k + ℓ lines, with at most two of them equal, therefore the desired

k + ℓ− 1 different lines.

3.4 Long universal lines

If the graph contains a long universal line, this line must have a very specific
structure.

Observation 3.13 (Long universal line). Let the line
←→
ab be a long universal

line. If its a+-part is not empty, then the vertex a is an articulation separating

the a+-part from the rest of the graph. Similarly for b+-part and the vertex b.

Proof. In the section about long lines, we have proven that there are no edges

between a+-part and ab+-part, nor between a+-part and b-part. (see Lemma

2.18) We assume that the line is universal, so the ∅-part is empty. Therefore

the vertex a separates the graph into two subgraphs, G1 = a+-part and G2 =

ab+-part ∪ b-part.

Similarly for the b-part and the vertex b.
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Chapter 4

Line Structure in Special

Graph Classes

In this chapter we consider several classes of graphs, for which we can describe
their line structure and even accurately count the number of their lines.

4.1 Graphs with all lines universal

Theorem 4.1. Each line of a graph G is universal if and only if the graph G

is a cycle C4, or a path Pn.

Proof. By the Shortest Path lemma, each line in C4 and in Pn is universal.

To prove that there are no other graphs, in which each line is universal, we

will use the Long universal line lemma 3.13. Such graphs must be triangle-

free, because a triangle is a distance subgraph and it defines three non-universal

lines. If a graph G does not contain triangle, and it is not the trivial case P1,

it contains two vertices a and b with distance d(a, b) = 2. The line
←→
ab is a long

universal line, therefore the vertices a and b separate the graph into three parts,

with some of the vertices in a-part, some of them in b-part, and some in ab-part.

The ab-part is a layer subgraph with three layers. (see Section 2.4)

a b
a-part b-part

Figure 4.1: Line
←→
ab separates the graphs into three parts.

Using the same argument for the a-part, if it is not a single edge or a single

vertex, there exist two points c and d in the a-part, such that d(c, d) = 2.
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These vertices separate the a-part into smaller subgraphs. We can continue this

process until every outer part of every considered line is an edge or a vertex.

. . . . . .

Figure 4.2: The graph after splitting of outer line parts.

Now we need to consider only the inner parts of the lines, such as the ab-part

of the first considered line. Recall that for each considered line, the distance of

its defining points is 2. Therefore, the inner parts contain exactly three layers.

The first and last layers contain only the points defining the line. The middle

layer does not contain any ladder edges, because the graph is triangle-free.

Assume that there are two different vertices u and v in the middle layer of a

line
←→
ab . Now we can see that if the graph contains any vertex x different from

all of a, b, u, v, by the Shortest Path lemma the vertex x cannot belong to the

line
←→
uv (examine the figure).

Therefore, either the graph is a C4, or each of the considered lines contains

only one inner point. In the latter case, the entire graph must be a single

path.

4.2 Graphs with all lines different

We have seen that n points in the euclidean plane in a general position define
a different line for each pair of the points. There are graphs with a similar
property—all the lines defined by vertices of the graph are pairwise different. In
Section 2.13, we have already seen that the complete graph Kn is such a graph.
We will show later in Theorem 6.2 that odd cycles C2k+1 have all lines different
too. We are now going to show several more examples of such graphs.

Unlike points in the plane, there are graphs with all lines different containing
a universal line. The following lemma shows one way of constructing such
graphs.

Lemma 4.2. Let all the lines in a graph G be different, and let G not have

a universal line. Let the graph G have an articulation a separating it into

subgraphs A and B. Construct a graph G′ by adding a new vertex b and the

edge ab to G. Then G′ has a universal line and all the lines in G′ are different.

Proof. The edge ab is a bridge in G′, therefore
←→
ab is a universal line. The

original graph G is a distance subgraph of G′, therefore every two lines defined

only by vertices in G are also different in G′.
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First, consider the structure of a line
←→
bc , without loss of generality let c ∈ A.

The vertex a is an inner point of the line
←→
bc , therefore, by the Articulation

lemma 3.7 no vertex in B lies on
←→
bc .

First, we show that for all three vertices x, y, z of G, the line
←→
bx is different

from the line
←→
yz . For a contradiction, assume that the lines are equal. Without

loss of generality, let x ∈ A. Then y and z must belong to A, otherwise they

would not lie on the line
←→
bx . The line

←→
yz contains b, therefore, by the Atr-

ticulation lemma, a is its outer point. However, by the same lemma,
←→
yz must

contain all the vertices in B as well. This makes it clearly different from
←→
bx ,

which contains no vertex in B.

Now, we will show that for all two vertices x, y of G the lines
←→
bx and

←→
by

are different. Again, assume that they are equal. Let x belong to A. If y ∈ B,

then, as above, y /∈
←→
bx . Therefore, both x and y must belong in the same part,

without loss of generality, in A. Let c be a vertex in B. By the Lemma 3.8,

the lines
←→
xc and

←→
yc contain the same points of B. But we assumed that they

are different, therefore they must differ in A. Now observe that the vertex c

separates the graph G′ into components A and C = B ∪ {b}. Since b, c ∈ C,

by the same lemma, lines
←→
bx and

←→
cx contain the same vertices of A. Similarly,

lines
←→
by and

←→
cy contain the same vertices of A. But since

←→
cx and

←→
cy differ in

A, lines
←→
bx and

←→
by must differ there as well.

a

b

c

x

y

A
B

Figure 4.3: A graph with a universal line and all lines different.

We have already seen that graphs with a diameter of one, that is, complete
graphs, have all lines different. In the following we will consider graphs with a
diameter of two. We show a result connecting the line structure of such a graph
with its complement. We will call the complement of a graph with diameter two
an antigraph. If uv is an edge in the antigraph, we will call it an antiedge.

Lemma 4.3 (Antigraph lemma). Let G be a graph with diameter 2, and let

H be its complement. Let a, b ∈ VG, and let NH [v] be the neighborhood of the

vertex v in H, that is, all vertices u for which dH(v, u) ≤ 1. Then for the line
←→
ab in G the following holds:

(1) If ab is an antiedge, then
←→
ab = VG \ (NH [a] ∪NH [b]) ∪ {a, b}.

(2) If ab is not an antiedge, then
←→
ab = NH [a]△NH [b].
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Proof. Note that since the diameter of G is 2, the distance of any two points of

G is either 1 or 2.

(1) In the graph G, ab is not an edge, therefore d(a, b) = 2. By the definition

of a line, the line
←→
ab contains, except for the vertices a and b, only such vertices

c, for which d(a, c) = d(b, c) = 1. Those are exactly those vertices for which

neither ac nor bc is an antiedge.

(2) Now ab is an edge, therefore
←→
ab contains the vertices a and b, and all

vertices c, for which d(a, c) = 1 and d(b, c) = 2, or vice versa. Such vertices in

H must be adjanced to exactly one of the vertices a and b.

Also observe that if H is not connected, let C be a set of all the vertices c
of H disconnected from both a and b. Then if ab is an antiedge, then the line
←→
ab in G contains all the vertices of C, and if ab is not an antiedge, then the line
←→
ab in G does not contain any vertex of C.

Observation 4.4. Let G be a graph with diameter 2 with all the lines different,

and let H be its complement. Then for all vertices a and b in the graph H,

NH [a] 6= NH [b].

Proof. For a contradiction, assume that there are two vertices a, b ∈ H, such

that NH [a] = NH [b]. Note that ab must be an antiedge, otherwise a /∈ NH [b].

Therefore, ab is not an edge in G, and since the diameter of G is 2, there exist

a vertex c, such that ac and cb are edges in G. Observe that since ac and bc are

not antiedges, and NH [a] = NH [b], it must hold in G that
←→
ac =

←→
bc . This is a

contradiction, as G has all its lines different.

Now let us consider a graph G obtained by removing a cycle Ck from a
complete graph Kn. The complement of G is a cycle, and optionally, several
isolated vertices. Let us denote the vertices on the cycle a1, a2, . . . ak and the
isolated vertices b1, b2, . . . bn−k. For which values of n and k, all the lines in G
are different?

For k = 3, the vertices a1 and a2 have the same neighborhoods in H, and
by the previous observation, there are at least two equal lines in G. For k = 6,

observe that the line
←−→
a1a2 is equal to the line

←−→
a4a5.

We leave it as an excercise to show that for every k ≥ 4 not equal to 6 all
the lines in G are different. Apply the Antigraph lemma 4.3 to determine which
points belong to which line. Several examples of different lines for n = 10, k = 7
are shown in Figure 4.4.

We can also remove a forest with certain properties from a complete graph,
and still obtain a graph with all lines different.

Theorem 4.5 (A forest antigraph). Let G be a graph with diameter at most 2,

and let its complement H be a forest. Graph G has all the lines different, if and

only if H does not contain any of the following four configurations:

(1) One tree of H is an edge K2.
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a2
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a4

a5

a6

a7
b1

b2

b3

x
y

x y

x

y

x
y

Figure 4.4: The graph H and several different lines of G, as described above.

(2) There exists a path a1a2a3a4a5, with degrees of vertices dH(a1) = dH(a5) =

1, and dH(a2) = dH(a4) = 2. The degree of a3 does not matter.

(3) The entire graph H is a single tree, and it contains a path a1a2a3a4 with

degrees of vertices dH(a2) = dH(a3) = 2, and all neighbours of a1 and a4,

except for a2 and a3, are leaves.

(4) The entire graph H consists of two stars, K1,k where k ≥ 1, and K1,ℓ

where ℓ ≥ 0.

1
K2

T

a1 a2 a3 a4 a5
2

a1
a2 a3 a4

3

4

Figure 4.5: Forbidden configurations of the forest H.

Proof. Let G be a graph with a diameter of 2 and with all lines different. Let

its complement H be a forest. We will show that if a line
←→
ab is equal to another

line
←→
cd , then the forest H has to contain one of the forbidden configurations.

The proof is a highly technical case analysis.

Throughout the proof, we will always discuss graph properties of the forest

H, such as leaves or subtrees. On the contrary, the line
←→
uv will always denote

a line in the graph G. If we assume that uv is an antiedge, by neighbors of v

we will mean all neighbors of v, except for u. And last, by distant neighbors of

v we will mean neighbors of neighbors of v, different from v. We hope that the

reader will not be confused by this notation too much.

In the figures, empty discs and dashed lines will denote vertices or edges,

which can not lie in H for a given condition to hold.

First, let both ab and cd be antiedges. If ab and cd belong to different trees,

and one of a or b is not a leaf, then there exists a neighbor of a or b not contained
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u v

neighbors

distant neighbors

Figure 4.6: An antiedge uv, v’s neighbors and distant neighbors.

in
←→
ab . However, because cd is in a different component, the line

←→
cd must contain

this neighbor. If both a and b are leaves, this gives the configuration (1).

Now, let both ab and cd belong to the same tree. We will show that at least

one of the vertices a or b is a leaf. For a contradiction, assume that both a and

b have neighbors. By the Antigraph lemma, these neighbors do not lie on the

line
←→
ab . The vertices c and d have to belong to the same subtree separated by

ab, because cd is an antiedge. However, at least one of the neighbors of a or b

is therefore not contained in a neighborhood of either c or d, as their distance

is too large. Therefore, this neighbor belongs to
←→
cd , but not to

←→
ab , which is a

contradiction. Similarly, we can prove that either c or d is a leaf. Without loss

of generality, let a and d be leaves.

If either b or c is a leaf as well, we reach the configuration (1). So let both

b and c be of degree at least two. None of b’s neighbors is contained in
←→
ab ,

therefore they can not be contained in
←→
cd , therefore they have to be neighbors

of either c or d. Since d is a leaf, they must be neighbors of c. This gives

d(b, c) = 2, and we can also see that there can be only one such a neighbor,

because H is a forest. This gives configuration (2), with a1 = a, a2 = b, a4 = c

and a5 = d.

T

a b d c

Figure 4.7: Two equal antiedge lines and their points.

Now, let ab be an antiedge and let cd not be an antiedge. Observe that the

line
←→
ab contains a points in each of the trees of H. Similarly, the line

←→
cd can

contain points in at most two different trees. Therefore, if
←→
ab and

←→
cd are to be

equal, H has to contain at most two trees. Let us denote the one containing ab

as A, and the other one (if it exists) B.

Assume now that c and d belong to two different trees. Without loss of

generality, let c belong to A. The line
←→
ab contains all the points in B, therefore

←→
cd must contain them all too. The vertex c is not in B, so all vertices in B
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must be in NH [d]. This gives that B is a star K1,ℓ, where ℓ ≥ 0. Now note

that vertices of A contained in
←→
ab must be the same as vertices in NH [c]. This

is possible only if A is a star K1,k, where k ≥ 1, where c is different from the

central vertex of the star. This gives configuration (4).

Now assume that all of a, b, c, d belong to the same tree. Also observe that

points lying on the line
←→
cd induce at most two connected components. If both

a and b have a distant neighbor, note that the line
←→
ab contains at least three

components—one induced by a and b, at least one induced by a’s distant neigh-

bors, and at least one induced by b’s distant neighbors. These components are

separated by the neighbors of a and b. Therefore,
←→
ab and

←→
cd can not be equal.

If none of a and b has distant neighbors, the tree is too small to place c and d

so that cd would not be an antiedge and
←→
cd would be equal to

←→
ab .

This means that exactly one of the vertices a and b can have distant neigh-

bors. Without loss of generality, let it be b. Therefore, all the neighbors of a

are leaves.

Note that in order to belong to
←→
cd , the vertex a must be in NH [c] or NH [d].

Without loss of generality, let it belong to NH [c]. However, c cannot be a

neighbor of a, because these neighbors do not lie on
←→
ab . If a has any neighbors,

c can not be the same vertex as a, as
←→
cd would contain neighbors of a. Therefore

c is equal to b. Now, in order not to lie on
←→
cd , neighbors of b must be also

neighbors of d. This means that there is at most one such neighbor. The vertex

d can have neighbors, which belong to both lines. However, it cannot have

distant neighbors, as those would belong to
←→
ab and not to

←→
cd . Also, b cannot

have distant neighbors except for d, as those would lie on
←→
ab and not on

←→
cd .

Therefore, we obtain the configuration (3).

If a does not have neighbors, c can be the same vertex as a. If b does not

have distant neighbors, there is nowhere in the tree where d could be placed.

Such distant neighbors of b must also be neighbors of d, then, similar to the

previous paragraph, there is at most one such neighbor, and d can not have

distant neighbors. Again, we obtain the configuration (3).

a b

d

Figure 4.8: An antiedge line and an equal non-antiedge line.

Last, let neither of ab and cd be an antiedge. Let a belong to a tree A and

let b belong to a different tree B. Note that neighborhoods of c and d have to

cover the same vertices as neighborhoods of a and b, therefore c and d have to
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belong to the same two trees. Without loss of generality, let c ∈ A and d ∈ B.

Now, since A and B are not connected, in order for the lines to be equal, it

must hold that NH [a] = NH [c] and NH [b] = NH [d]. We know that either a 6= c

or b 6= d, so let a 6= c. But in a tree two vertices a 6= c can have the same

neighborhoods only if the tree is an edge, giving configuration (1).

The last situation says that both a and b belong to the same tree. In order

for a to lie on
←→
cd , it must belong to exactly one of the neighborhoods of c or d.

Let a lie in NH [c]. The vertex b cannot belong to NH [c] as well, because then

c would not lie on
←→
ab . Therefore b must belong to NH [d]. Again, either a 6= c

or b 6= d. Let a 6= c.

If neither a nor c are leaves, the neighborhoods of b and c can not simulta-

neously cover a’s and c’s neighbors, so the lines differ. So let a be a leaf. If c is

a leaf as well, we obtain configuration (1). Otherwise, for the lines to be equal,

the neighbors of c must be covered by either d or b, but not both. As before,

there can be only one such neighbor, let it be a vertex x. Also, b and d must be

different vertices. Similarly, one of them has to be a leaf, and the other one is

connected to x. We obtain configuration (2).

If you do not understand the proof, go through it again and draw the situ-

ations on a piece of paper.

4.3 Special graph classes

To conclude this chapter, we will show several results about the structure of
lines in some specific graph classes.

First, consider cycles. By an application of Theorem 6.2 for simple graphs,
for even cycles C2k we get universal lines defined by each edge and each pair
of opposite points. Any other two lines are different. This gives

(

2k
2

)

− 3k + 1

different lines. Similarly, for odd cycles C2k+1 we get
(

2k+1
2

)

different lines, since
each line is different.

Now, consider trees. Observe that the number of lines in a general tree can
vary greatly. We have already shown that a path Pn defines only one line, and
on the other hand a star K1,n−1 defines

(

n−1
2

)

+ 1 different lines.
The following observation tells us more about the structure of a line in a

tree.

Observation 4.6. Let T be a tree, and let a and b be its vertices. The line
←→
ab

contains the shortest path between a and b, and subtrees separated by a and b

(see Figure 4.9 below).

Proof. Recall the Articulation lemma 3.7. Each inner vertex of a tree is an

articulation. The inner points on the path ab are inner points of the line
←→
ab ,

therefore by the lemma
←→
ab does not contain subtrees separated by these points
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a

b

Figure 4.9: Points on a line in a tree.

(white in the figure). The points a and b are outer points of
←→
ab , so the line

←→
ab

contains the subtrees separated by a and b (grey in the figure).

Observation 4.7. Let T be a tree and let
←→
ab be a line in T . Then:

• If c is a outer point of
←→
ab , then

←→
ab contains all the neighbors of c.

• If d is a proper inner point of
←→
ab , then

←→
ab contains exactly two neighbors

of d.

Proof. Obvious, observe the figure 4.9 above.

If a tree contains a vertex c of degree two, let us denote its neighbors a and
b. Observe that c is a subdivision of the bridge ab. By the Bridge pumping
theorem 3.2, contracting the edge ac does not change the structure of lines, nor
the number of different lines. We can repeat this operation while there is a
vertex of degree two in the tree. If there is no such vertex, we will call this tree
a normalized tree.

Lemma 4.8. Let T be a normalized tree. Then any two long lines
←→
ab and

←→
cd

are different.

Proof. The tree is normalized, therefore every vertex, which is not a leaf, has a

degree of at least 3. Now, consider a subgraph S of T induced by the points of

the line
←→
ab . By the previous observation, a vertex in S has a degree of two if

and only if it belongs to the ab+-part of
←→
ab . The line

←→
ab is a long line, hence

S contains at least one such vertex. The ab+-part is connected, therefore these

vertices form a path P in S. The ends of this path are of degree 2, so they have

a neighbor in S. By Lemma 2.18, there is no edge between ab+-part and the

other proper parts, therefore these neighbors must be a and b.

Consequently, we can distinguish the vertices a and b in a tree just by know-

ing the set of the points of the line
←→
ab .

Note: this does not hold in general when the graph is not a tree.

If the paths [ab] and [cd] were equal, they would define the same set of points.

Therefore, the vertices a and b have to be equal to vertices c and d.
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Corollary 4.9. Let T be a tree with n vertices, out of which k vertices have a

degree of 2. Then T contains
(

n−k−1
2

)

+ 1 different lines.

Proof. First, we normalize T to obtain a normalized tree T ′. Note that the

normalization operation does not change the degrees of the vertices, therefore

after normalizing k initial vertices of degree 2, we obtain T ′ with n− k vertices.

Each edge in a tree is a bridge, thus every edge line is universal. By the

previous lemma, any pair of two nonadjancent vertices defines a unique, non-

universal line. This gives
(

n−k
2

)

− (n − k − 1) =
(

n−k−1
2

)

long lines. Together

with the universal line we get
(

n−k−1
2

)

+ 1 different lines.

Last, we describe the line structure of complete k-partite graphs.

Observation 4.10. Let G be a complete k-partite graph with parts P1, P2, . . . , Pk

of sizes a1, a2, . . . , ak, where for all i : ai ≥ 3. Then G contains

(

k

2

)

+

k
∑

i=1

(

Pi

2

)

different lines.

Proof. The graph G contains two distinct types of lines. First, consider two

vertices a and b, a ∈ Pi, b ∈ Pj . We see that:

d(a, b) = 1

∀x ∈ Pi, x 6= a : d(a, x) = 2, d(b, x) = 1, x ∈
←→
ab

∀y ∈ Pj , x 6= b : d(a, y) = 1, d(b, y) = 2, y ∈
←→
ab

∀z ∈ Pk, k 6= i, j : d(a, z) = 1, d(b, z) = 1, z /∈
←→
ab

Hence, the line
←→
ab contains all the vertices in Pi ∪ Pj . By choosing i and j we

obtain
(

k
2

)

pairwise different lines.

Now let c, d ∈ Pi. Observe that:

d(c, d) = 2

∀x ∈ Pi, x 6= c, d : d(c, x) = 2, d(d, x) = 2, x /∈
←→
cd

∀y ∈ Pj , j 6= i : d(c, y) = 1, d(d, y) = 1, y ∈
←→
cd

Therefore, the line
←→
cd contains all the vertices in parts different from Pi, and

also the vertices c and d. Again, every two such lines are different, and also

different from any lines obtained in the previous paragraph. By choosing the

vertices c and d, for every part Pi we get
(

ai

2

)

different lines. In total, we get

(

k

2

)

+

k
∑

i=1

(

ai

2

)

different lines in G, as stated by the observation.
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b

c d

Figure 4.10: Lines in a k-partite graph.

For example, for the complete bipartite graph Km,n we obtain 1+
(

m
2

)

+
(

n
2

)

different lines.
Note that if every ai ≤ 3, the graph does not contain a universal line. We

will try to estimate a lower bound for the number of different lines. It can be
seen that for a given n and k, we get a minimal number of lines if all ai are equal.
Let the graph contain k parts, each with n

k vertices. Therefore, the number of

lines is approximately k
2

2
+ k · (k/n)

2

2
= 1

2 (k2 + n
k

2). In order to minimize this

number, let k = n2/3, giving approximately n4/3 lines.
Moreover, we conjecture that the minimal number of lines in any graph

without a universal line is very close to n4/3.
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Chapter 5

Graph classes with k

different lines

In this chapter we consider the following question: for a given integer k, which
graphs contain exactly k different lines?

Definition 5.1. We say that a graph G is k-linear, if the vertices of G define

exactly k pairwise different lines.

5.1 Graphs with small number of lines

Let us consider the cases where k is a small integer.

Proposition 5.2.

• The only 1-linear graphs are the cycle C4 and any path Pn.

• There is no 2-linear graph.

• The only 3-linear graph is the triangle K3.

Proof. Note that if a graph has a non-universal line
←→
ab , there exist a vertex c,

such that c /∈
←→
ab . By the Triangle lemma 2.7, then both a /∈

←→
bc and b /∈

←→
ac ,

giving at least three different non-universal lines. Therefore, if a graph is 1-

linear, the line must be a universal line. We have already shown in Theorem

4.1, that these graphs are C4 and any Pn.

If a graph is 2-linear, it contains at least one non-universal line. Then it has

to contain at least three different lines, which is a contradiction.

Now consider 3-linear graphs. If such a graph contains a universal line, sim-

ilarly to above, we find at least three different non-universal lines, four different

lines in total. Therefore, a 3-linear graph can not contain a universal line. The

only graph with at most 3 vertices with three different lines is K3. Now consider
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a graph G with at least 4 vertices. Any edge in G is not universal, therefore,

by Lemma 2.14, G contains an odd cycle. Observe that the shortest odd cycle

in G is a distance subgraph: if there was a shorter path between two vertices

on the cycle, it would induce two shorter cycles, at least one of which has to be

odd. If the length of the shortest odd cycle is at least 5, by Theorem 6.2 the

cycle contains at least
(

5
2

)

= 10 different lines, and by Lemma 2.10, since the

cycle is a distance subgraph, these lines differ in G as well.

We now see that G has to contain a triangle abc. The three lines
←→
ab ,
←→
bc ,

and
←→
ca are pairwise different. We assumed that G has more than three vertices,

therefore at least one of the vertices of the triangle has to have a neighbor.

Without loss of generality let a have a neighbor d. Now consider the distance

subgraph induced by vertices a, b, c, d. Observe that

• If neither db nor dc are edges, the line
←→
da contains all of a, b, c, therefore

it defines a fourth line.

• If db is an edge and dc is not, the line
←→
dc contains all of a, b, c, therefore

it defines a fourth line. Similarly if dc is an edge and db is not.

• If both db and dc are edges, the four vertices induce a complete subgraph

K4, which defines
(

4
2

)

= 6 different lines.

In each of the cases, the vertices define at least 4 different lines.

a

b c

d a

b c

d a

b c

d

Figure 5.1: Three possible distance subgraphs induced by vertices a, b, c, d.

5.2 Finite and infinite classes of k-linear graphs

Observe that the set of all k-linear graphs can be empty (for k = 2), non-empty
but finite (for k = 3), or infinite (for k = 1). For a given k, we ask which of the
cases holds.

Observation 5.3. There are infinitely many integers k, such that the set of all

k-linear graphs is infinite.

Proof. For a given integer ℓ ≥ 3, consider the star K1,ℓ. Let c be its center

vertex, and let a1, a2, . . . aℓ be the endpoints. Observe that each of the lines
←→
aic

is universal, and each line
←−→
aiaj = {aibaj}. Every two such lines are therefore

different, and by choosing i and j we obtain
(

ℓ
2

)

+ 1 different lines. Now, by the
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Bridge pumping theorem 3.2, we can subdivide any of the edges and we obtain

a different graph with the same number of lines. We can repeat the subdivision

to obtain any number of different graphs.

Therefore, for every integer ℓ ≥ 3, if we choose k =
(

ℓ
2

)

+ 1, the set of all

k-linear graphs is infinite.

We have discovered many more formulas in the form k = aℓ2 + bℓ + c, such
that for every large enough ℓ, the set of all k-linear graphs is infinite. However,
as of the time of writing, we do not know any k other than 2 or 3, for which
the set of k-linear graphs is empty or finite. We conjecture that there are no
5-linear graphs, and the only 6-linear graphs are those pictured in Figure 5.2.

Figure 5.2: Two 6-linear graphs.

Now, for certain integers k, we can obtain an infinite class of k-linear graphs.
However, every graph in the class we have shown contains a universal line. If
there were infinitely many k-linear graphs without a universal line, this class
would necessarily contain a graph with k + 1 vertices, which would be a coun-
terexample against the Klee-Wagon conjecture 1.4. We will soon show that this
is not possible.

In this and the following proof we will use one result of the Ramsey theory,
which states:

Theorem 5.4 (Ramsey). Given any two integers k and ℓ, there exists an integer

n, such that the following holds:

Let G be a complete graph with at least n vertices. Let its edges be colored

by ℓ different colors, that is, let there be a function c : E → {1..ℓ}. Then G

contains a complete subgraph with at least k vertices, such that all edges of the

subgraph are of the same color, that is, there is a set W ⊆ V , such that |W | ≥ k,

and ∀u, v, x, y ∈W,u 6= v, x 6= y : c(uv) = c(xy).

We will denote such n by R(k, ℓ).

Theorem 5.5. For any given k, consider the set of all graphs G, such that G

is k-linear and does not have a universal line. This set must be finite.

Proof. We are going to show that there exists an integer n, such that every

graph with at least n vertices contains either a universal line, or more than k

different lines. There are only finitely many graphs with less than n vertices,

so the theorem holds. This means that every “large enough” graph has either

a universal line, or “enough” different lines.
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Let n = R(k, k), and let G be a graf with at least n veritces. For a con-

tradiction, assume that G contains at most k different lines, none of which is

universal.

Now, number the different lines in G by the numbers 1, 2, . . . , k. Construct

a complete graph L with VL = VG. Let c(uv) be the number of the line
←→
uv

in G. By Ramsey’s theorem 5.4, the graph L contains a complete subgraph

with at least k vertices. Let us denote these vertices v1, v2, . . . vk. Note that for

each pair of vertices, the edges between the vertices in L have the same color,

therefore they define the same line in G. Let us denote this line L .

We assumed that the graph G does not have a universal line, hence there is a

vertex w /∈ L . Now let 1 ≤ i < j ≤ k. The line
←→
vivj is L , therefore it does not

contain w. By the Triangle lemma 2.7, it holds that also vi /∈
←→
vjw and vj /∈

←→
viw.

Therefore, every two lines
←→
viw and

←→
vjw are different, and also different from L .

However, this gives k different lines
←→
viw, and the line L different from each of

them. In total, we have at least k+1 different lines. This is a contradiction.

Finally, observe that we have generated an infinite set of k-linear graphs by
finding one such graph containing a bridge and subdividing the bridge to obtain
an arbitrary number of k-linear graphs. We are going to show that this is the
only way we can obtain such an infinite set. Similarly to Lemma 4.8, we can
contract an edge incident with an articulation of degree 2. This does not change
the number of lines. As in Lemma 4.8, we obtain a normalized graph, which has
no articulation with a degree of 2. We disallow bridge pumping by considering
only normalized graphs.

Theorem 5.6. For a given integer k, the class of all k-linear normalized graphs

is finite.

Similarly as above, we will show that for a given k, there exists an integer
n, such that a normalized graph with at least n vertices contains more than
k lines. We will prove this by a series of observations, each giving us a more
specific structure which must be contained in the graph. To give a bound on n,

• let kK be the smallest integer such that
(

kK

2

)

> k,

• let kC be the smallest even integer such that
(

kC

2

)

− 3
2kC + 1 > k,

• and let kT be the smallest integer such that
(

kT −1
2

)

+ 1 > k.

Note that this is chosen so that the graphs KkK
, CkC

and a tree with kT vertices
with a degree different from 2 contain more than k different lines. Each of the
calculations is given in Section 4.3.

Lemma 5.7. For a given integer k1, there exists an integer n, such that every

normalized graph with at least n vertices and at most k different lines contains

a 2-edge-connected subgraph with at least k1 vertices.
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Proof. Let G be such a graph. Observe the structure of the graph. It contains

several 2-edge-connected components separated by bridges and isolated vertices.

Note that since G is normalized, the degrees of isolated vertices are either 1 or

at least 3. Consult the figure 5.3.

Figure 5.3: Structure of a normalized graph.

First, let us bound the number of isolated vertices. Consider a tree T ob-

tained from the graph G by contracting all the 2-edge-connected components.

Observe that the relation of betweenness among isolated vertices in G is pre-

served in T . Therefore, all lines different in T are also different in G. All isolated

vertices in G have in T diameter different from 2. Therefore, by Corollary 4.9, if

G contains at least kT isolated vertices, they define more than k different lines.

Now, we will bound the number of 2-edge-connected components. If G

contains at least two such components, for each component C we can find an

edge ab going into C, that is a /∈ C and b ∈ C. Since C is 2-connected, b must

have at least two different neighbors. Let us denote them c and d. Now consider

the line
←→
ac . We can see that regardless of whether cd is an edge, the vertex d

does not lie on
←→
ac . Also, observe the shortest paths between vertices a and c,

and vertices in a component other than C. Observe that for every component,

the line
←→
ac either contains all the vertices of the component, or it contains none

of them. The only component which contains a vertex lying on
←→
ab and a vertex

not on
←→
ab is C. Therefore, each component defines a line, and those lines are

different for two different components. If G contains more than k components,

they define more than k different lines.

Finally, let n ≥ kT + k · k1. We have shown that G contains at most kT iso-

lated vertices, therefore there are at least k · k1 vertices in the 2-edge-connected

components. Also, there are at most k components, therefore, by the pidgeon-

hole principle, at least one of them contains k1 vertices.

Lemma 5.8. For every two integers k and k2, there exists an integer k1, such

32



that every graph G with at least k1 vertices and at most k different lines contains

two vertices with a distance more than k2.

Proof. Let k1 = R(kK , k2), and let G be a graph with at least k1 vertices. For a

contradiction, assume that the distance of every two vertices in G is at most k2.

Constuct a complete graph L, such that VL = VG. For every two vertices u and

v, let c(u, v) = d(u, v). By Ramsey’s theorem 5.4, there is a complete graph in

L with all edges of the same color. This means that there are kK vertices in G,

such that the distance between every two of them is equal. Now, similarly as for

complete graphs, note that no line defined by two of those vertices can contain a

third one. Therefore, every pair defines a different line. Since there are at least

kK vertices, they define more than k different lines, which is a contradiction.

Lemma 5.9. For every two integers k and k3, there exists an integer k2, such

that every graph G with two vertices with a distance of at least k2 and at most k

different lines contains two vertices u and v, such that the shortest path between

u and v has at least k3 vertices, and the degree of every inner vertex of the path

is 2.

Proof. Let u′ and v′ be vertices of G, such that d(u′, v′) = k2. Consider a

shortest path P between u′ and v′. Let us denote all the vertices on this path

with degree greater than two branched. We will bound the number of branched

vertices.

Consider the graph induced by P and all neighbors of the branched vertices.

Since the path is shortest, no vertex not on the path can be adjanced to two

vertices with a distance of three or more. Observe that every branched vertex

must be in one of the following configurations:

x

a b c

x

a b c

x

a b c

x

a b

1

2

3

4

Figure 5.4: Possible configurations of branched vertices. We will explain the

highlighted lines in the proof.

We will show an algorithm which gives us several different “important” lines.

Throughout the algorithm we will mark all of the branched vertices. We start

with all branched vertices unmarked, and proceed in four steps.
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(1) While there is an unmarked vertex in the configuration ©4 , select the line
←→
xb as important, and mark the vertices a, b, and c. Observe, for example

by considering the shortest paths, that out of the vertices of P , the line
←→
xb contains only the vertex b. We are always selecting a different vertex,

therefore every such line is different. If there is no unmarked vertex in the

configuration ©4 , proceed to step two.

(2) While there is an unmarked vertex in the configuration ©3 , select the line
←→
xb as important, and mark the vertices a, b, and c. Again, observe that

the line
←→
xb contains from P only the vertices a, b and c. Therefore, every

such line is different, and they are also different from lines obtained in

step one. If there is no unmarked vertex in the configuration ©3 , proceed

to step three.

(3) While there is an unmarked vertex in the configuration ©2 , select the line
←→
xa as important, and mark the vertices a and b. Observe that the line

contains all the vertices of the path up to a. Again, two such lines are

different from each other and from all the lines obtained in previous steps.

If there is no unmarked vertex in the configuration ©2 , proceed to step

three.

(4) Last, while there is an unmarked vertex in the configuration©1 , select the

line
←→
xc as important, and mark the vertex b. This line contains all the

vertices of P , starting from b. All the selected lines are different from each

other and from all previously selected lines.

Observe that at the end of the algorithm, all branched vertices are marked.

Now, we have assumed that the graph contains at most k different lines. There-

fore, we have executed a step of this algorithm at most k times. Since in each

step we mark at most three vertices, P contains at most 3k branched vertices.

Also note that the vertices marked in each step form a continuous subpath of

P , therefore they divide P into at most k+1 continuous subpaths consisting only

of unbranched vertices. Now, let d(u′, v′) > 3k+(k+1) ·k3. At most 3k vertices

are branched, so there are at least (k + 1) · k3 unbranched vertices in at most

k + 1 continuous subpaths. Consequently, by the pidgeonhole principle, there

is a subpath with at least k3 unbranching vertices. Recall that all unbranched

vertices have a degree of 2, so this subpath is the path the lemma asks for.

Proof of Theorem 5.6. For a contradiction, assume that for any n there is a

normalized graph G with n vertices and at most k lines.

The first lemma states that we can choose n large enough for G to definitely

contain a 2-edge-connected subgraph G′ with at least k1 vertices. The second

lemma states that we can choose k1 large enough for G′ to contain two vertices

with a distance at least k2. The third lemma states that we can choose k2 large

enough for G′ to contain a path P between vertices u and v with every inner
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vertex of degree two, such that d(u, v) > kC

2 . Now, note that G′ is 2-edge-

connected, therefore there is at least one other path uv, which is edge-disjoint

with P . Let Q be the shortest such path. Since the degree of all the inner

vertices of P is 2, the paths must be vertex-disjoint as well.

Finally, observe that the cycle formed by the union of P and Q is a distance

subgraph of G′: if there was a shorter path between two vertices of the cycle,

the chosen paths would not be shortest. This circle contains at least kC vertices,

therefore it defines more than k different lines. Consequently, by the distance

subgraph lemma, the graph G′, and also G, must contain more than k different

lines as well.
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Chapter 6

Weighted graphs

In this chapter we will briefly consider weighted graph. We will assign a real
positive length to each edge of the graph and consider the length of a path be
the sum of lengths of its edges.

Observation 6.1. Every finite discrete metric space (X, ρ) is equivalent to a

weighted graph.

Proof. Consider a complete weighted graph G, let VG = X. For every two

vertices x and y, let d(x, y) = ρ(x, y) in the metric space.

Theorem 6.2 (Weighted cycles). Let a graph G be a weighted cycle Cn. Then

exactly one of the following holds:

(1) The graph G contains a universal line.

(2) All the
(

n
2

)

lines in G are different.

Proof. We will first show that at least one of the statements is true.

We will prove the theorem by a geometric analogy. Let us map the vertices of

G on a circle, so that the angle between two consecutive vertices is proportional

to the length of the edge connecting them in G. See Figure 6.1.

The distance of two vertices a and b in G is equal to their distance on the

circle in this mapping. Observe that vertices c, such that [acb], are mapped to

points on the shorter arc ac in the circle. Let a′ be a point opposite to a on the

circle, similarly define b′. Observe that vertices c, such that [cab], are mapped

to points on the shorter arc b′a. Similarly, vertices c with [abc] are mapped to

the arc ba′. Therefore, the line
←→
ab contains vertices mapped to points on the

longer arc a′b′. We will call this arc line arc of
←→
ab , and we will call the shorter

arc a′b′ outer arc of the line. Again, see Figure 6.1.

If the point a lies opposite to the point b, for all points c on the circle holds

[acb], therefore the line
←→
ab is universal. Similarly, if there is a vertex mapped

to either of the points a′ or b′, it defines a universal line.
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a
2

b

3
c

1

d 2
e

1

a

b

c

d

e

a′

b′

S

Figure 6.1: Mapping of the points of the cycle to a circle.

Now let
←→
ab be an edge line. If the outer arc of a line

←→
ab contains no mapped

vertices, the line is universal. If this arc contains at least two points c and d,

observe that the outer arc of
←→
cd is a subset of the shorter arc ab, therefore it is

empty, and
←→
cd is universal. Consequently, if there is no universal line, the outer

arc of each edge line contains exactly one point.

Observe that the outer arcs are disjoint, and they cover the entire circle.

Therefore, each point is contained in exactly one outer arc. We can define a

bijection between edge lines and points on the circle, as shown in Figure 6.2.

a

b

c
d

S

a

b

c

Figure 6.2: A bijection between edge lines and points on the circle.

Now consider a long line
←→
ab . Note that the outer arc of

←→
ab is an union of

outer arcs of edge lines defined by edges on the shortest path ab. Similarly, the

line arc of
←→
ab is an intersection of line arcs of these edge lines. Now observe the

outer arcs of two lines ab and cd. We can see that since there is a point in each

of the line arcs defined by edge lines, two outer arcs of the lines must contain

different points. Therefore, the lines must be different. It does not matter which

two lines we choose, therefore every two lines in G are different.

Now we show that both statements cannot be true at the same time. Let
←→
ab

be an universal line. We are going to show that G contains at least two equal

lines. As above, we can see that either a and b are opposite points, or the outer

arc of
←→
ab is empty.
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If a and b are opposite, consider a point c closest to a and a point d closest

to b. Without loss of generality, let d(a, c) ≤ d(b, d). Consider the line
←→
ac . Its

outer arc is the shorter arc bc′, and since d was chosen as the closest point to b,

this arc is empty. Consequently, the line
←→
ac is universal and equal to

←→
ab .

Now, let there be no pair of opposite points, and let there be no points in the

outer arc of an edge line
←→
ab . Let c be a neighbor of b different from a. Consider

the outer arcs of
←→
ac and of

←→
bc . Since the outer arc of

←→
ab is empty, these two

arcs contain precisely points in the outer arc of
←→
bc . Therefore, the lines

←→
ac and

←→
bc are equal.

Corollary 6.3. In a simple cycle Ck, there are
(

k
2

)

different lines if k is odd,

and
(

k
2

)

− k − k
2 + 1 lines if k is even.

Proof. Perform the mapping of vertices to a circle again. In the first case, the

outer arc of each edge line contains exactly one point, therefore all the lines are

different. In the second case, all the lines are different, except for k edge lines

and k
2 lines defined by opposite points, which are all universal.

Observe that some of the results introduced in previous chapters hold for
weighted graphs as well. In several cases we need to construct an normalized
weighted graph by removing all the edges which do not influence the metric. In
particular, we remove edges ab, for which the length of the edge ab is greater
than or equal to the length of the shortest path between a and b not containing
this edge. Note that this does not change any distances in the graph.

We can see that results we depending only on the relation of betweenness
hold here as well. All the results about line structure and distinguishing of
lines hold. Results about bridges, articulations and cuts are independent on the
weights. On the other hand, properties of edge lines are lost.
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Chapter 7

Equilinearity and Graph

Reconstruction

We can consider graphs and their lines in the opposite way. Is it possible to find
a graph with a given set of lines? Are there some non-isomorphic graphs that
have exactly the same lines? We would like to answer some of these questions
in this section.

We will use the following notation. We write ls(G) for the set of different
lines and LS(G) for the multiset of all

(

n
2

)

lines. Also, sometimes is useful to

know which points define each line. The tagged line
←→
ab is a pair ({a, b},

←→
ab ) for

a 6= b. We will write LSt(G) for the multiset of all the tagged lines.
We can note one general thing about reconstruction algorithms working only

for certain graph classes. We can easily defect if such an algorithm obtains a
set of lines which does not come from the specified graph class. In this case,
the algorithm either fails or outputs a graph. If it does not fail, we can take
the constructed graph, calculate its lines and compare them with the input. If
this does not yield the set of lines we started with, the algorithm has made an
error, which means some of the assumptions about the graph did not hold.

7.1 Equilinearity

How good description of a graph G is its lst(G) or LSt(G)? Some graphs are
uniquely determined, for example, the complete graph is the only graph where
every line contains only two vertices. However, for some lst or LSt there are
multiple non-isomorfic graphs with the given lines. We will call such graphs
equilinear.

Definition 7.1. Let G and H be two graphs, such that |V (G)| = |V (H)| and

G 6∼= H. Graphs G and H are weakly equilinear, if ls(G) = ls(H), and strongly

equilinear, if LS(G) = LS(H).
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Obviously, strong equilinearity is a stronger property. When two graphs are
strongly equilinear, they are also weakly equilinear. The smallest example of a
pair of strongly equilinear graphs is C4 and P3, in both cases all the lines are
universal.

Moreover, there exists an infinite number of such pairs. Consider the follow-
ing construction of pairs Gn and Hn, graphs with n + 2 vertices a, b, c1, . . . , cn.
Both graph contain a complete subgraph induced by the vertices c1, . . . , cn. In
Gn, ab is an edge and a is adjacent to all the vertices ci. In Hn, ab is not an
edge, and both a and b are adjacent to all the vertices ci. Observe that the two
graphs are strongly equilinear.

a b

c1

c2
G2

a b

c1

c2
H2

a b
Kn

Gn

a b

Kn
Hn

Figure 7.1: The construction for n = 2 and for a general n.

In the following sections, we consider the following problem: given one of
the representations of lines of a graph, are we able to construct a graph with the
same lines? Note that we are always able to examine lines in all possible graphs
with the required number of points and compare them to the given description.
Therefore, we are only interested in polynomial-time algorithms.

7.2 Reconstruction of trees

As shown in Section 4.3, the line structure of trees is highly regular.

Theorem 7.2 (Reconstruction of a tree). Let T be a tree. We are able to

construct a tree isomorphic to T , given only ls(T ).

Proof. We will show an algorithm to do this.

Let us denote vertices with a degree of at least three as large, and all the

other vertices as small. By a non-branching path we mean a path with a degree

of every inner vertex equal to two. Recall Observation 4.6 about trees.

The algorithm works in three steps. First, we identify all the large vertices

of the tree. Second, we find out all the edges between large vertices. Last, we

connect all the small vertices.

40



(1) Consider the following asymmetric relation R defined on the vertices of

the tree. Let a and b be vertices, then (a, b) ∈ R if and only if every line

containing a contains also b.

Let us observe basic properties of this relation. Let a be a large vertex, we

show that for no vertex x is (a, x) ∈ R. Consider three neighbors of a, let us

denote them b, c and d. By the tree observation, we obtain that every neighbor

of a does not lie on at least one of the lines
←→
bc ,
←→
cd and

←→
bd .

On the other hand, let a be a small vertex. Consider a maximal non-

branching path containing a, let us denote it P . Observe that for every vertex

b, (a, b) ∈ R if and only if b lies on this path: by Observation 4.7, if a lies on a

line
←→
xy , this line has to contain both ends of P .

Consider the endpoints of P , denote them b and c. Each of these points

must be either a leaf, or a large vertex. If it is a large vertex, by the previous

observation (b, a) ∈ R cannot hold.

These two observations tell us all we need to know about the relation R for

the purpose of the reconstruction. We construct the relation from the set of

lines, and we identify all the large vertices. Moreover, we find all the maximal

non-branching paths in the graph and which large vertices are its endpoints.

Consider the oriented graph of the relation R, a graph where ab is an edge if

(a, b) ∈ R. Non-branching paths of the tree form a complete oriented subgraph,

and additionally, there is an edge going from every vertex of the path to the

endpoint(s) of the path. Examine Figure 7.2.

Figure 7.2: The graph of the relation R of a tree. The “bubbles” are complete

directed graphs, the dashed lines are edges of the tree we do not know yet.

(2) Now, we need to find out edges between large vertices. Let a and b be two

large vertices. Observe which points lie in the intersection of all lines containing

both a and b. We will show that these are exactly the points of the path ab.

Clearly, points of this path lie on every line containing a and b, because every

line induces a connected subgraph. Now, let a1 and a2 be the neighbors of a not
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lying on the path ab. Similarly, let b1 and b2 be such neighbors of b. Observe

that
←−→
a1b1 ∩

←−→
a2b2 = the path ab. Therefore, the intersection of all such lines

must be the path ab.

a b

a1

a2

b1

b2

Figure 7.3: The intersection of
←−→
a1b1 and

←−→
a2b2 is the path ab.

Now, we see that if a and b are adjanced, this path contains only these two

vertices.

Finally, from the relation R we can easily connect all the small vertices on

non-branching paths to the endpoints of the path. However, note that we will

never be able to distinguish the order of vertices on such a path. But this does

not matter, because regardless of this order the resulting tree will be isomorphic

to the desired result.

Corollary 7.3. No two non-isomorphic trees are equilinear.

Proof. For a given set of lines, the algorithm always builds exactly one tree.

Therefore, no two non-isomorphic trees can have the same sets of lines.
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Chapter 8

Conclusions

In the article we have considered a generalization of the de Brujin-Erdős theorem
for discrete metric spaces induced by graphs. We have not been able to prove
the Klee-Wagon conjecture, but we have obtained vast knowledge about the
structure of lines in graphs.

We have proved several observations useful in easily determining whether a
vertex lies on a line, and whether two lines are different. We have seen that the
line structure is closely connected to shortest paths in the graph.

Then we have considered bridges, cuts, and separators and we have proved
that lines in separated parts are closely connected. We have seen an interesting
connection between cuts and universal lines: every bridge defines a universal
line, and the union of lines defined by a cut contains all the vertices of the
graph. We conjecture that if two graphs satisfy the Klee-Wagon conjecture,
their articulation join satisfies it as well.

Next, we have analyzed several interesting classes of graphs. We have been
able to completely analyze the structure of several graph classes, such as trees,
cycles, or complete k-partite graphs. We conjecture that the conditions de-
scribed in the Klee-Wagon can be strengthened. We have completely described
graphs where every line is universal, and we have given numerous examples
of graphs where every line is different, such as the complete graph Kn. It is
still unclear which graphs exactly belong in the latter class. We have shown
a surprising property between lines in a graph with a diameter of 2 and its
complement. We have not yet found any similar relationships for graphs with a
larger diameter.

We have also considered the class of graphs with a given number of different
lines. We have completely described these graphs for several small numbers,
and proved that such classes are often infinite. However, the infinite property
holds only because of one specific operation which adds vertices, but preserves
the lines.

We have briefly touched the problem for general finite discrete metric spaces,
interpreted as weighted graphs. Many of the previous results hold here as well,
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and we have been able to count the number of lines in a cycle easily using
weighted graphs. However, several notions simple in simple graphs are difficult
to interpret for weighted graphs.

Last, we have evaluated the reverse problem: given only a representation
of the lines in a graph, what can we tell about the graph itself? We have
shown that in some cases, the graph can not be reconstructed uniquely, as
there are sets of non-isomorphic graphs with exactly the same structure of lines.
However, for specific classes of graphs, trees and graphs with a diameter of 2,
we can completely reconstruct the graph using only minimal information about
the lines.

Several interesting questions are still open:

• Prove the Klee-Wagon conjecture 1.4 for specific graph classes, especially
if the class itself does not guarantee fulfillment of one of the conditions
trivially.

• Is the articulation join neutral in regard to the Klee-Wagon conjecture?
• What is the minimal number of lines in a graph without a universal line?
• Which graphs have all the lines different?
• Describe the class of k-linear graphs for some k > 3, or at least show for

which integers k this classes are empty or finite.
• Improve one of the bounds in Theorems 5.5 or 5.6 not to use Ramsey

numbers.
• Which graphs can we reconstruct from their line description? It is possible

to create at least one graph satisfying a given line description in polynomial
time?
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