
Katedra Informatiky
Fakulta Matematiky, Fyziky a Informatiky

Univerzita Komenského, Bratislava

Gene Finding

Using Rt-pcr Tests

Študentská vedecká konferencia 2009

Jakub Kováč

Supervisor: Mgr. Broňa Brejová, PhD. Bratislava, 2009

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Previous Work and Statement of the Problem 2
1.3 Our results . 2

2 Biological problem 5
2.1 Brief introduction to molecular biology 5

2.1.1 Proteins . 5
2.1.2 DNA . 5
2.1.3 Gene . 6
2.1.4 Protein synthesis . 6

2.2 Size and complexity of the human genome. 9
2.3 Gene prediction . 9

2.3.1 Statement of the Problem 9
2.4 Introduction to RT-PCR tests . 10

2.4.1 Polymerase Chain Reaction and RT-PCR 10
2.4.2 RT-PCR as a black box 11

3 Formulation of the Problem 15
3.1 Definitions of the Basic Terms . 15
3.2 Exon graph . 17

4 Algorithms and Hardness Results 19
4.1 Single RT-PCR Test . 19

4.1.1 Bad News . 19
4.1.2 Good News . 20

4.2 Multiple RT-PCR Tests and Alternative Splicing 23
4.2.1 Multiple RT-PCR Tests 23
4.2.2 Length Inference . 24

4.3 Useful and Forbidden Pairs . 27
4.3.1 Bad news . 31
4.3.2 Good news . 35

4.4 More on Multiple RT-PCR Tests 40

5 Conclusion 43

iii

iv CONTENTS

Chapter 1

Introduction

1.1 Motivation

In April 2003, 99% of gene-containing part of human sequence was determined
to 99.99% accuracy. However, without further analysis, this is just a string of
3 billion A’s, C’s, G’s and T’s. Gene finding i.e., finding the regions of DNA that
encode proteins is then one of the first and most important steps in deriving
some meaningful knowledge from a DNA sequence.

Due to its vast size, it would be very time consuming to analyze whole
genome manually. Therefore algorithms and methods have been developed that
can predict the location and exon structure of genes. A gene is a region or
a substring of DNA, which encodes a protein or a functional RNA molecule.
However, only some parts of the substring, called exons, are actually translated
to a protein; the remaining parts, called introns, are discarded in the process
of protein synthesis. In the process of gene prediction we are interested in
discovering exons as disjoint intervals of the genome (we explain more of the
biology in Chapter 2). Methods to predict exons and introns are based largely
on probabilistic models of gene structure, particularly hidden Markov models
(HMMs). Such a model can for example capture known differences between
the frequencies of some letters in coding and non-coding parts of DNA, certain
patterns that are usually present at the boundaries between introns and exons,
etc. These so called ab initio (“from the beginning”) gene finders use only
the genomic sequence, without additional extrinsic information. They can be
further extended to incorporate various forms of external evidence (for example
database of known proteins). There are even methods for combining outputs of
different gene finders.

The gene finders are evaluated by comparing the predictions with experimen-
tally validated known genes and it is done on three levels – on the nucleotide
level we look at the individual letters and check how many of them were classified
correctly as coding or non-coding; on the exon level we look at the individual
exons and count how many of the predicted exons are exactly identical to the
real ones and at the gene level we find how many genes were predicted entirely
correctly. Although gene finders are very good at a nucleotide level, it is still
very hard to predict entire gene with all exon–intron boundaries exactly right.

1

2 CHAPTER 1. INTRODUCTION

1.2 Previous Work and Statement of the Prob-
lem

In this thesis we try to improve the process of gene prediction by considering
an additional external information – results of an RT-PCR test, which basically
tell us the sum of lengths of the exons in a certain region of DNA. It was in-
spired by a paper by Agrawal and Stormo (2006), which used a simple heuristic
to find good transcripts of given length even in presence of alternative splic-
ing. In a small experiment with 151 regions of DNA with alternative splicing
they compared their solution with an ab initio gene prediction program called
Genefinder. Genefinder predicted one of the two correct product 65% of the
time. Compared to this, the Locus software (“Length Optimized Characteri-
zation of Unknown Spliceforms”) by Agrawal and Stormo (2006) predicted at
least one of the two products 97% of the time and both products 64% of the
time. Moreover, when considering also the second through fourth best solutions,
the ability to predict both products increased to 72–75% and considering the
ten best solutions to 80% (in this case, although at the cost of lower specificity,
89% of all gene products are accurately predicted).

We try to improve on this result by

• solving the underlying algorithmic problems exactly and

• generalizing it to more RT-PCR test results.

We propose to use a gene finder that outputs putative exons in a DNA
sequence. We generate enough putative exons so that with high probability they
will contain all the true ones; we also expect an abundance of false positives,
which are to be filtered. These exons may be thought of as vertices in a graph
where edges represent possible introns and paths represent possible transcripts.
Each vertex has an associated length and each edge has an associated score.
The length of a transcript is the sum of lengths of its exons and score of a
transcript is the sum of scores of its introns. We generally try to find paths
with the highest scores. The RT-PCR test result as an additional information
tells us, what length should a path have, if it goes through some pair of vertices.

1.3 Our results

We state and study a new problem in computational biology. The bad news
are that the problem in its full generality and even several subproblems are NP-
hard. In Section 4.1 we prove that the problem is NP-hard (but not strongly
NP-hard) even for a single RT-PCR test result; in Section 4.2 we prove that
more RT-PCR tests and alternative splicing makes situation even worse.

On the other hand, we show that there is a pseudopolynomial algorithm
for a single RT-PCR test. Furthermore, the lengths cannot be measured very
precisely anyway and in Section 4.1 we give an algorithm that finds high score
paths (with certain guarantees) of approximate length.

In Section 4.3 we study the problems of avoiding forbidden or passing useful
vertex pairs in a directed acyclic graph, which seems to be at the core of the
complexity of our problem. The problem of avoiding forbidden pairs is to find
a path between two vertices in a graph that avoids all the forbidden pairs of

1.3. OUR RESULTS 3

vertices (i.e., a path that contains at most one vertex from each forbidden pair).
A very similar problem is that of passing useful pairs: Given a graph with
a set of useful pairs the problem is to find a path that “collects” or passes
through as many useful pairs as possible. It turns out that the complexity of
the problem depends largely on the mutual positions of the pairs. We study
these problems in depth proving some subproblems to be NP-hard and showing
effective algorithms for some special cases.

The effective algorithms for certain special cases of the useful pairs problem
can then be generalized to a pseudopolynomial solution for some special cases
of our problem.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Biological problem

2.1 Brief introduction to molecular biology

2.1.1 Proteins

Proteins are the main building blocks and functional molecules of cells. They
take up almost 20% of an eukaryotic cell’s weight, which is the largest contri-
bution after water (70%) (Brazma et al., 2001).

Different types of proteins play crucial role in almost every biological process.
Proteins called enzymes catalyze (increase the rate of) biochemical reactions.
They are able to alter, join or chop up other molecules. There are structural
proteins such as collagen, which strengthens skin and bones. Transmembrane
proteins are responsible for maintaining cellular environment and regulating cell
volume. Proteins actin and myosin provide for muscle contraction; hemoglobin
transports oxygen to tissues, certain proteins control growth and cell differenti-
ation, start or repress DNA expression and so on and so forth.

Proteins are polymers – macro-molecules consisting of a chain of simple units
(amino acids) connected by peptide bonds. There are 20 different amino acids
that can be found in proteins, each having its one-letter code. Thus if we do
not take into consideration the three-dimensional structure of proteins, we can
encode them as strings over the alphabet Γ = {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R,
S, T, V, W, Y}.

2.1.2 DNA

DNA, deoxyribonucleic acid, stores an organism’s genetic information and con-
trols the production of proteins. It is thus responsible for the biochemistry of
an organism.

A DNA strand is a long chain of small molecules, called nucleotides, linked
by phosphate ester bonds. Each nucleotide consists of phosphate, sugar (a 2-
deoxyribose in case of DNA) and an amine base. The alternating phosphate
and sugar residues form a backbone and to each sugar there is an amine base
attached. There are four amine bases: adenine, cytosine, guanine and thymine.
Nucleotides are denoted by letters A, C, G and T, respectively according to the
bases. Despite the complex three-dimensional structure of DNA, it appears that
the genetic material it stores only depends on the sequence of nucleotides. Thus

5

6 CHAPTER 2. BIOLOGICAL PROBLEM

it can be modelled as a string over the alphabet Σ = {A, C, G, T}. This string is
refered to as a DNA sequence and may be obtained by a process called DNA
sequencing.

Usually DNA does not exist as a single molecule, but rather as a pair of com-
plementary DNA strands winding around each other forming the well-known
double helix (a right-handed spiral). Two DNA strands are complementary (or
antiparallel), if one can be obtained from the other by mutually exchanging all
the A’s with T’s and C’s with G’s, and changing the direction of the molecule to
the opposite. The A–T and C–G pairs are called (complementary) base pairs (ab-
breviated bp). This complementarity is exploited e.g. during DNA replication –
two strands of the DNA unwind and new complementary strands are fabricated.

2.1.3 Gene

In the cells, DNA is “packaged” in several chromosomes (e.g. humans have
24 chromosomes). The total complement of genetic material (DNA from all
chromosomes) is called genome. The genome of an organism contains templates
of molecules that are necessary for life – proteins and RNA (however, we will
consider only proteins). A region of the genome that encodes a single protein is
called a gene. Proteins are created from genes by a complicated process called
protein synthesis (or more generally, gene expression).

Figure 2.1: Gene is a region of a chromosome encoding one protein.
Chromosome is made of two complementary DNA strands. Source:
http://en.wikipedia.org/wiki/File:Gene.png

2.1.4 Protein synthesis

The process of protein synthesis can be divided into three phases: transcription,
splicing and translation (see Fig. 2.2).

2.1. BRIEF INTRODUCTION TO MOLECULAR BIOLOGY 7

5’ UTR 3’ UTR

ORF

exon intron exon intron exon intron

exon

DNA

transcription

pre-mRNA

splicing

mRNA

translation

protein

Figure 2.2: Protein synthesis: In the first step a region of DNA is transcribed
onto a pre-mRNA. The introns are discarded in a process called splicing. Term
alternative splicing then refers to the fact that this may be done in several ways.
The last step is translation, where the resulting protein is constructed based on
the triplets of nucleotides in mRNA. The white block represents a region in the
beginning and at the end of mRNA called UTR – untranslated region. The part
of sequence that encodes protein is called open reading frame (ORF). Although
technically, exons may contain a part of a UTR, by exons we will mean simply
the coding parts of exons (the gray blocks).

In the first phase the DNA is temporarily unwinded and the region encoding
a protein, the gene, is copied (transcribed) into pre-mRNA (prefix “pre-” is
for “preliminary”). This pre-mRNA contains the same information as the gene
(although in complementary form). However, in eukaryotic organisms (such as
animals and plants) usually not whole gene is coding – it consists of coding parts
called exons and non-coding parts called introns. These non-coding regions are
cut out in the second phase in a process called splicing. The introns are removed
and exons are joined together forming an mRNA. The “m” is for “messenger”,
since in eukaryotic cells the DNA is contained in cell’s nucleus and proteins are
made in cytoplasm outside the nucleus. Thus mRNA is used for transporting
the information. Then, in cytoplasm, the mRNA is translated into protein by
cell machinery (by protein-RNA complex ribosome, other RNA, etc.). Recall
that RNA is a chain of nucleotides (string over 4 letters alphabet) and protein
is a chain of amino acids (string over 20 letters alphabet). Each triplet of
nucleotides in mRNA, called codon, encodes one amino acid according to the so
called genetic code (see Tab. 2.1 and Fig. 2.3).

Since there are 43 = 64 codons and only 20 amino acids, many amino acids
are encoded by several different triplets. Each protein sequence starts with
methionine (M) encoded by AUG and ends with one of the stop codons UAA, UAG,
or UGA (denoted by asterisk in Tab. 2.1).

If we map the regions of an mRNA that are translated back to the original
DNA, we get several non-overlapping intervals called coding regions. We will
call them simply exons (even if not technically correctly).

8 CHAPTER 2. BIOLOGICAL PROBLEM

Figure 2.3: During the translation a protein encoded in mRNA is con-
structed; each triplet of the mRNA bases encodes one amino acid of a pro-
tein. Thus the mRNA code is “translated” into the “protein” code. Ta-
ble 2.1 summarizes which triplets code for which amino acids. Source:
http://en.wikipedia.org/wiki/File:Rna-codons-protein.png

UUU → F UUC → F UUA → L UUG → L
UCU → S UCC → S UCA → S UCG → S
UAU → Y UAC → Y UAA → * UAG → *
UGU → C UGC → C UGA → * UGG → W
CUU → L CUC → L CUA → L CUG → L
CCU → P CCC → P CCA → P CCG → P
CAU → H CAC → H CAA → Q CAG → Q
CGU → R CGC → R CGA → R CGG → R
AUU → I AUC → I AUA → I AUG → M
ACU → T ACC → T ACA → T ACG → T
AAU → N AAC → N AAA → K AAG → K
AGU → S AGC → S AGA → R AGG → R
GUU → V GUC → V GUA → V GUG → V
GCU → A GCC → A GCA → A GCG → A
GAU → D GAC → D GAA → E GAG → E
GGU → G GGC → G GGA → G GGG → G

Table 2.1: The genetic code specifies which triplets of RNA bases (called codons)
code for which amino acids. Codon AUG is reffered to as start codon; codons
UAG, UAA and UGA are the stop codons which signify the end of translation.

2.2. SIZE AND COMPLEXITY OF THE HUMAN GENOME. 9

2.2 Size and complexity of the human genome.

To get an idea of the size of human genome, let us list some of its parameters.

• Human genome consists of 24 chromosomes (22 types of autosome and
two sex chromosomes, X and Y).

• The chromosomes have variable length ranging from 46 to 245 MB (read
“mega bases”, that is 106 bases). In total, human DNA consists of ap-
proximately 3 billion (3 · 109) base pairs (Strachan and Read, 1999).

• It is estimated that the human genome contains 20 000–25 000 genes; only
about 1.5% of the DNA sequence is coding proteins. The rest are RNA
genes, regulatory sequences, introns and highly repetitive sequences.

• The average number of exons in a human gene is about 8–10, with the
mean value of 8.8 exons per gene. The average exon length is 170 base
pairs (with standard deviation 192–397 on different chromosomes), while
80–85% exons on each chromosome were found to be less than 200bp (base
pairs) in length (Sakharkar et al., 2004).

• The average intron size is 5419bp (however, with much higher stardard
deviation 4741–23528). About 5.24% of introns are more than 200 000bp
and less than 10% of introns are more than 11 000bp in length. On the
other hand less than 0.01% of introns are less than 20bp long (Sakharkar
et al., 2004).

• An average human gene contains about 6–9 introns, with the mean value
7.8 introns per gene; this number varies from 0 in about 3 362 genes (the
single exonic genes) to 147 introns of nebulin (Sakharkar et al., 2004).

2.3 Gene prediction

2.3.1 Statement of the Problem

The goal of gene prediction is to detect the coding regions of a given DNA
sequence. The sequence usually contains several genes on each strand – the goal
is to predict coding regions of every gene on both strands. The coding region can
be unambiguously specified by giving the strand, position, length and reading
frame. The reading frame specifies the position (modulo 3) in a codon – this is
needed because introns can separate one codon into two exons; a coding region
does not need to start with a full codon.

The gene prediction problem is usually formalized as follows:

Problem 0 (The gene prediction.). Given a DNA sequence x = x1x2 . . . xn ∈
Σ∗, find the labeling λ = λ1λ2 . . . λn ∈ Λ∗, corresponding to the correct gene
structure of all genes in x. Λ = {0, 1, 2, i, x}, where 0, 1 and 2 denote the
reading frame in a coding region (exon), i denotes an intron and x denotes an
intergenic region (non-coding region between two genes).

However, the problem of gene finding is actually more complicated than the
definition suggests. Previously scientists believed in a ‘one gene → one protein’
dogma. This turned up not to be true.

10 CHAPTER 2. BIOLOGICAL PROBLEM

• First, genes encode not only proteins but also RNA (tRNA, ribosomal
RNA, etc.).

• Second, the synthesized proteins and even the pre-mRNA (after the first
phase) may be modified in several ways (so called post-translational and
post-transcriptional modification).

• Third, two genes may overlap – this is prevalent in the short genomes of
viruses and bacteria, however, hundreds of overlapping genes were discov-
ered even in the human genome.

• And fourth, sometimes the mRNA can be spliced in more than one way
– when a gene is being expressed, different regions may be cut out (as
introns), leading to different mRNA molecules and ultimately different
proteins. This is called alternative splicing.

Most of the today’s software solves Problem 0, predicting only one splic-
ing variant per gene and ignoring overlapping genes. However, in the future,
the computer scientists and even biologists will have to cope with the above-
mentioned problems (under these conditions, even the definition of gene is un-
clear).

2.4 Introduction to RT-PCR tests

2.4.1 Polymerase Chain Reaction and RT-PCR

The polymerase chain reaction (PCR) is a widely used technique of molecular
biology. With PCR it is possible to make millions or more copies of a piece of
DNA, starting with only one or few copies of this piece.

A basic PCR setup requires several components and reagents, including

• DNA template that contains the DNA region (target) to be amplified,

• many copies of one or more primers (usually a short strand of complemen-
tary RNA, which serves as a starting point for DNA replication),

• DNA polymerase – an enzyme that assists in DNA replication,

• dNTPs – the building blocks from which a new DNA strand is synthesized,

• and several other components.

The procedure consists of alternating heating and cooling: when DNA is
heated, the hydrogen bonds that hold the two strands together melt and DNA
unwinds. Then the temperature is lowered allowing annealing of the primers to
the single-stranded DNA template. The DNA polymerase binds to the primer-
template hybrid and begins DNA synthesis. It synthesizes a new DNA strand
complementary to the DNA template strand by adding dNTP’s from the envi-
ronment. This makes up one cycle, which is repeated 20–35 times. Note, that in
each cycle the number of copies of the DNA template doubles (if all goes well);
thus the template is exponentially amplified (see Fig. 2.4; Wikipedia (2009a)).

Reverse Transcription PCR (RT-PCR) is a variant of polymerase chain reac-
tion where an RNA strand is first reverse transcribed into its DNA complement
(cDNA) using the enzyme reverse transcriptase (Wikipedia, 2009b).

2.4. INTRODUCTION TO RT-PCR TESTS 11

After the amplification, the RT-PCR product is loaded onto an agarose gel
for electrophosphoresis. The electromotive force is used to move the products
through the gel matrix. This technique is based on a principle that the molecules
with lower length have lower weigth and thus (with the same momentum) travel
longer distances in the gel matrix (the distance they travel is approximately
inversely proportional to the logarithm of their size). We can make the molecules
visible (see Fig. 2.5) and using markers – a mixture of molecules of known size
– the lengths of the RT-PCR products may be estimated by comparison with
the markers.

2.4.2 RT-PCR as a black box

In the previous section the principles behind RT-PCR were explained. However,
it is sufficient for us to treat an RT-PCR experiment as a black box.

Actually we may treat an RT-PCR test in three different ways as a gradually
stronger and stronger black box:

1. Given a pair of primers (or simply two positions on a DNA strand), an
RT-PCR test says Yes, if there is a transcript with both primers contained
in some of its exons; otherwise the test says No (in other words, the test
says Yes, if there is a product of some transcript at the end of the test).
This is the weakest RT-PCR black box; we shall actually use this model
in Section 4.3.

2. Given a pair of primers, an RT-PCR test outputs all the lengths of the
products (estimated from the electrophosphoresis). This is the middle
RT-PCR black box, which is our main concern in this thesis.

3. The strongest version of an RT-PCR black box sequences all the prod-
ucts, so we get to know not only lengths of the products, but the specific
nucleotides from which the products are comprised. Since the subsequent
sequencing incurs further expenses, we do not consider it in this thesis.

12 CHAPTER 2. BIOLOGICAL PROBLEM

Figure 2.4: Polymerase Chain Reaction: In phase 1 the mixture is heated and
the double helix of DNA unwinds; in phase 2 it is cooled down and the primers
adhere to the DNA strands; in phase 3 the DNA is copied by DNA poly-
merase; these 3 steps are repreated several times; in each iteration the num-
ber of copies containing the region between the two primers doubles. Source:
http://upload.wikimedia.org/wikipedia/commons/8/87/PCR.svg

2.4. INTRODUCTION TO RT-PCR TESTS 13

Figure 2.5: Electrophosphoresis: The molecules are moved by electromo-
tive force; the shorter they are, the longer distance (from the top) they
travel. In the first lane there is a so called DNA ladder containing mark-
ers of known size; other four lanes show variously-sized DNA fragments.
By comparison with the first lane we can estimate their sizes. Source:
http://en.wikipedia.org/wiki/Image:AgaroseGel.jpg

14 CHAPTER 2. BIOLOGICAL PROBLEM

Chapter 3

Formulation of the Problem

3.1 Definitions of the Basic Terms

In this chapter we translate the problem into the language of computer science
and formulate the biological problem as an algorithmic problem. In particular,
we define a result of an RT-PCR test and we model the putative exons and
introns as a graph and transcripts as paths in this graph. Thus we state the
problem as a graph-theoretical one.

Exons (the coding regions) are basicaly substrings of a DNA sequence so
if the DNA sequence is fixed, we can represent them as intervals, giving their
starting and end positions. Then a transcript is composed of several such exons
(at least one).

Definition 3.1 (Transcript). Transcript is a nonempty sequence of disjoint
intervals. Intervals of a transcript are called exons and intervals between exons
(from the end of one exon to the beginning of the following exon) are called
introns.

For example Fig. 3.1 shows 4 transcripts. The first and the last ones consist
of 4 exons and 3 introns, the middle ones have just 3 exons (gray bars are exons,
lines between them are introns).

As we mentioned in Chapter 2, we treat an RT-PCR test as a black box,
which given position of the two primers in a DNA sequence returns the length
of a trancript between the two primers. More generally, if we take alternative
splicing into account, there may be more such transcripts which may (and may
not) have different lengths. On the other hand there may be no such transcript
in which case we do not get any length.

Definition 3.2 (Result of an RT-PCR test). The result of an RT-PCR test
is a tuple (p1, p2, 〈m1,M1〉, 〈m2,M2〉, . . . , 〈mk,Mk〉), where p1 and p2 are posi-
tions of the primers (p1, p2 ∈ N, p1 < p2) and pairs 〈mi,Mi〉 are the measured
lengths (minimum and maximum). We treat the measured lengths as inter-
vals to model uncertainty stemming from imprecision of measurement. Lengths
〈mi,Mi〉 and 〈mj ,Mj〉 from the same RT-PCR test are disjoint intervals for
i 6= j. On the other hand we treat primers as points for simplicity.

We will consider mostly results without alternative splicing having at most
one measured length, i.e. (p1, p2) or (p1, p2, 〈m,M〉).

15

16 CHAPTER 3. FORMULATION OF THE PROBLEM

exon
intron

primer 1 primer 2

Figure 3.1: This figure shows 4 transcripts; the gray bars represent exons, the
lines between them are introns; one tick represents 10 bases. If we carry out an
RT-PCR test with the positions of primers as shown, we get products of two
different lengths. The first and the last transcripts will both yield a product
of length approximately 90 bases, the second transcript will have a product
cca 40 bases long and the third one does not produce any product, since the
second primer is not contained in any of its exons. Thus the result of the
RT-PCR test may be (if we account for imprecission of measurement), say
(2, 16, 〈37, 42〉, 〈83, 105〉).

Example 3.1. Fig. 3.1 shows an RT-PCR test where we place the primers
at positions 2 and 16. Assume that the only possible transcripts are the ones
shown. Then the third transcript does not have any product, because it does
not contain the second primer. Imagine that one tick or one bar represents 10
bases in the DNA sequence. Then the length of the product from the second
transcript is approximately 40 bases so the measured length may be say 〈37, 42〉.
The length of the product from the first and the last transcript is approximately
90 bases and we may measure e.g. 〈83, 105〉. Thus we can write the result of
this RT-PCR test as (2, 16, 〈37, 42〉, 〈83, 105〉).

Note that this test will not differentiate between the first and the last tran-
script and will not even indicate that there is more than one transcript with
the given length. All we know is that there is at least one transcript of length
approximately 90 bases. The same applies to the second transcript: we cannot
be sure that there is only one transcript of the given length. On the other
hand, another RT-PCR test with different positions of primers may succeed in
discriminating between the two.

Remark 3.1. Note that all the positions and lengths in a DNA sequence are
integers, so what we really mean by an interval 〈a, b〉 in the definitions of exons
and results of RT-PCR tests is 〈a, b〉 ∩ Z = {x ∈ Z | a ≤ x ≤ b}.

Now let us define, what does it mean to say that certain transcript explains
some result of an RT-PCR test and what does it mean to say that some tran-
script is consistent with some result of an RT-PCR test.

Definition 3.3 (Explanation, Consistency). We say that a transcript ex-
plains length 〈mi,Mi〉 from the result of some RT-PCR test, if it contains both
primers and sum of lengths of exons between the primers is in the interval
〈mi,Mi〉. Formally: transcript 〈e1, e′1〉, 〈e2, e′2〉, . . . , 〈en, e′n〉 explains the i-th
length from the test (p1, p2, 〈m1,M1〉, . . . , 〈mk,Mk〉), if there are indices q and

3.2. EXON GRAPH 17

r such that p1 ∈ 〈eq, e′q〉, p2 ∈ 〈er, e′r〉 and

mi ≤ (e′q − p1) + (p2 − er) +
r−1∑
j=q+1

(e′j − ej) ≤Mi.

We say that a transcript is consistent with the result of an RT-PCR test,
if it either explains some length of the test, or if it does not contain one of the
primers (otherwise it is inconsistent).

Example 3.2. The first and the last transcript on Fig. 3.1 both explain length
〈83, 105〉. Transcript 3 is consistent with that RT-PCR test result, because it
does not match the second primer.

In the problems we solve we are usually given a set of putative exons and
the transcripts are unknown. Naturaly not every combination of exons forms a
transcript consistent with all RT-PCR test results. We seek to find transcripts
that explain at least some results, but they should be consistent with every
result.

3.2 Exon graph

Let us formulate the problem in the language of graph theory. We consider a
graph (which we call an exon graph), where vertices represent possible exons
and edges represent possible introns. For example if two exons are not disjoint
intervals in the DNA sequence, there is no edge between them. On the other
hand, if two exons are too far appart, it is improbable that the first one is
directly followed by the second one in some transcript, so again there is no edge
between the two. Since the exons are ordered on the DNA from “left to right”
(e.g. by the starting position), the graph is naturally directed and acyclic – there
is an edge going from exon e to e′ if the two exons are disjoint (as intervals), e
is to the left of e′ and e′ may directly follow e in some transcript. In this graph
any path corresponds to a putative transcript.

Moreover, for each vertex we have length `(v) which is the length of the
corresponding exon and for each vertex and edge we have its score. Scores of
the exons are determined from the result of a gene finder – vertices with higher
scores are more probable (more probably correct). We can have also scores for
introns based e.g. on the distribution of their lengths (introns of certain length
are more probable than too short or too long ones). Actually it is sufficient
(and simpler) to have scores just for edges and carry the scores of vertices over
to their out-going edges.

Since the graph is directed and acyclic, we may sort it topologically. For
simplicity we also add special starting and terminal vertices s and t (as the
first and the last in topological order) with edges into/from each vertex that
represents an exon which can serve as a possible first or last exon of a transcript,
respectively (this information is also obtained from a gene finder). Consequently
we can focus solely on the s–t paths.

Definition 3.4 (Exon graph). Exon graph is a directed acyclic graph G =
(V,E, `, S, s, t), where ` : V → N is a function which assigns to each vertex v
the length `(v) of the exon it represents and S : E → Q+ is a function which
assigns to each intron – edge e – its score S(e).

18 CHAPTER 3. FORMULATION OF THE PROBLEM

We will assume that the graph is topologically sorted and all its vertices are
s = v0, v1, . . . , vn, vn+1 = t in that order. In this setting a result of an RT-PCR
test is a tuple (p1, p2, 〈m1,M1〉, 〈m2,M2〉, . . . , 〈mk,Mk〉), where p1, p2 ∈ V are
vertices corresponding to the primers. Transcript is an s–t path in G and its
length is a sum of lengths of its vertices and its score is sum of the scores of its
edges.

We would like to find transcripts with high score which explain some lengths
and which are consistent with as many RT-PCR tests as possible. To model this,
transcript gets bonus B ∈ Q+ (which is added to its score) for each length of RT-
PCR test result that it explains and gets penalty P ∈ Q+ (which is subtracted
from the score) for each RT-PCR test result with which it is inconsistent.

Thus we can formulate the problem (in its full generality) as follows:

Problem 1. Given an exon graph G = (V,E, `, S, s, t), results of RT-PCR
tests T1, . . . , TR, bonus B for explaining measured length and penalty P for
inconsistency with result of an RT-PCR test, find the transcript (s–t path in
G) with the highest score.

Unfortunatelly, this problem is way too hard (actually several its subprob-
lems and special cases turn out to be NP-hard). In the next chapter we study
the following subproblems and variants:

• In Section 4.1 we are concerned with just one RT-PCR test result. We
develop a pseudopolynomial algorithm and an approximate solution.

• In Section 4.2 we try to generalize the results from Section 4.1. However,
we show that even a slightly simpler problem (without the graph structure)
with multiple RT-PCR test results and alternative splicing is strongly NP-
hard.

• In Section 4.3 we drop all the lengths and scores and study two problems:
finding a transcript that does not contain any of the forbidden pairs of
vertices (consistency) and a transcript that contains as many useful pairs
of vertices as possible (explaining results). These are special cases of
Problem 1 and we prove them NP-hard (thus these may be thought of
as the hard core of the problem). We further study several classes of
forbidden or useful sets of vertex pairs (by their mutual positions) and
either prove them NP-hard or give efficient algorithms.

• Finally in Section 4.4 we return to our problem and generalize some results
of Section 4.3 into some special cases of Problem 1.

Chapter 4

Algorithms and Hardness
Results

4.1 Single RT-PCR Test

4.1.1 Bad News

Before studying the problem in full generality we analyze the problem with just
a single RT-PCR test result with only one length. All the algorithms in this
section can be easily extended for a single result with more measured lengths
(alternative splicing). Also if the test gives more products, we may want to select
those lengths or that length that is not yet explained by well-known transcripts.

Problem 2 (Single RT-PCR test). Given an exon graph G = (V,E, `, S, s, t)
with two distinguished vertices s and t (starting and terminal) and a single RT-
PCR test result T = (s, t, 〈m,M〉) find an s–t path π (transcript) of length
m ≤ `(π) ≤M with the highest score S(π).

Note that in this setting we seek to explain the result of the RT-PCR test.
Also we can ignore the part of the exon graph outside of the two vertices chosen
as primers, since the transcript length in this part is not considered and the
score can be simply optimized.

Theorem 4.1. The problem of finding even a feasible s–t path π such that
m ≤ `(π) ≤M is NP-complete.

Proof. Reduction from subset sum problem: for set X = {x1, . . . , xn} and target
sum S we construct a complete directed acyclic graph where lengths of vertices
are the xi’s and m = M = S is the desired sum.

Actually we do not need a complete graph: we can construct graph G =
(V,E), where V = {s = a0, v1, a1, . . . , vn, an = t} and E = {(ai−1, vi), (vi, ai),
(ai−1, ai) | 1 ≤ i ≤ n}, i.e. we add auxilliary vertices between vi’s, where
`(ai) = 0 and `(vi) = xi (for all i) and from all auxilliary vertices we can either
go through vertex vi or jump over to the next auxilliary vertex. Thus any s–t
path naturally corresponds to a subset of X and vice versa.

19

20 CHAPTER 4. ALGORITHMS AND HARDNESS RESULTS

4.1.2 Good News

However, the problem is not strongly NP-complete: we show a pseudopolyno-
mial algorithm:

Theorem 4.2. The problem of finding the best transcript of a given length can
be solved in O(M(V +E)) where M is the maximum length in the RT-PCR test
result.

Proof. We use dynamic programming approach: Let H [i, l] be the highest score
we can achieve by some s–vi path of length l in G or −∞ if there is no such
path. Then H [0, `(s)] = 0 and H [0, l] = −∞ for all l 6= `(s). If we know H [j, l′]
for all j < i and all l′ ≤M , we can calculate H [i, l] for all l ≤M by formula

H [i, l] = max{H [j, l − `(i)] + S(j, i) | (vj , vi) ∈ E}.
We can improve this algorithm by considering only achievable lengths l for

each vertex i. To do so we store the highest scores in a map Mi and go the
other way around: When we process i-th vertex, for all achievable lengths l and
for all out-neighbours vj of vi we set

Mj [l + `(vj)]← max(Mj [l + `(vj)], Mi[l] + S(i, j)).

If we implement map Mi as a hash table for each i, or even use a common
hash table M with key being a pair (vertex, length), we get the same expected
time complexity and possibly lower space requirements (see Algorithm 1).

Algorithm 1: Pseudopolynomial algorithm for a single RT-PCR test
Input: Exon graph G = (V,E, `, S), RT-PCR test result

T = (s, t, 〈m,M〉)
Output: The highest score of an s–t path π of length m ≤ `(π) ≤M
mind[n+ 1]← 0; maxd[n+ 1]← 0;
for i← n to 0 do

mind[i]← `(i) + min{mind[j] | vj is an out-neighbour of vi};
maxd[i]← `(i) + max{maxd[j] | vj is an out-neighbour of vi};

end
for i← 0 to n+ 1 do Mi ← ∅;
M0[`(s)]← 0;
for i← 0 to n do // process vertex vi

foreach out-neighbour vj of vi and (l, S) ∈Mi do
l′ ← l + `(vj); S′ ← S + S(vi, vj);
if (m ≤ l + maxd[j]) and (l + mind[j] ≤M) and

(Mj [l′] is unset or Mj [l′] < S′) then
Mj [l′]← S′;

end
end

end
return max{Mn+1[l] | m ≤ l ≤M};

We can further improve the algorithm by eliminating lengths that cannot
achieve the target length. We can calculate for each vertex v the minimum

4.1. SINGLE RT-PCR TEST 21

distance mind(v) and the maximum distance maxd(v) from v to t and ignore all
lengths l such that l + mind(v) > M or l + maxd(v) < m (i.e. even if we went
by the shortest path from now on, the s–t path would be too long or even if we
went by the longest path, the s–t path would be too short).

Thus we can solve the simplified problem exactly in pseudopolynomial time.
We will now introduce an algorithm that can find a transcript with a very good
score of slightly worse length: not in 〈m,M〉, but, say 〈m/(1 + ε),M(1 + ε)〉.
Moreover we can do this for each 0 < ε in time polynomial in 1/ε and the
size of input. This is very similar to a fully polynomial time approximation
scheme, although technically it is not even an approximation algorithm: instead
of returning a feasible solution with almost the best score it returns an almost
feasible solution with at least as good score as the best possible.

Theorem 4.3. Let π∗ be the optimal transcript of length m ≤ `(π∗) ≤M with
the highest score S(π∗). It is possible to find transcript π of length m/(1 + ε) ≤
`(π) ≤M(1+ε) with score S(π) ≥ S(π∗) for every 0 < ε ≤ 2 in time polynomial
in the size of input and 1/ε. That is, we can find a transcript of almost the given
length with a score that is not less than the score of the best transcript.

Proof. We use the dynamic programming solution and adapt the idea of FPTAS
for the subset sum problem (Ibarra and Kim, 1975). We use mapMi of highest
scores for each length again, but this time we just approximate the length of
the transcript so we do not keep lengths that are very close to each other. If ε
is big, we keep only few lengths that are further apart, so the algorithm is fast
but not so precise. On the other hand, if ε is small, we keep more lengths and
the algorithm is more similar to the pseudopolynomial solution.

More precisely, in each Mi we keep only lengths l, l′ ∈ {0, 1, . . . ,M}, l < l′

such that l(1 + δ) ≤ l′, where δ = ε
2|V | . The algorithm works as follows: For

each vertex, map Mi can be thought of as a list of pairs (length, highest score
of any path of this length). We begin with M0 = {(`(s), 0)}. When processing
vertex vi we sort Mi by scores and filter the lengths that are too close to each
other. More precisely, we store the lengths that survive in F ; we start with
F = {−∞,+∞} (just two sentinels). Then we take the lengths l one by one
(from the highest to the lowest score), find their predecessor lp and successor ls
in the set F and keep them only if the predecessor and successor are far enough
– if lp(1 + δ) ≤ l ≤ ls/(1 + δ). After we filter the lengths that are too close
to each other we update the maps Mj of the neighbouring vertices as in the
dynamic programming solution (see Algorithm 2).

We now have to show that

• the algorithm can be implemented in time polynomial in |V |, |E|, logM
and 1/ε;

• and if there is a path π∗ of length m ≤ `(π∗) ≤ M with maximal score
S(π∗), the algorithm returns an s–t path π of length m/(1 + ε) ≤ `(π) ≤
M(1 + ε) with score S(π) ≥ S(π∗).

Let us count the maximal number of elements in Mi after filtering: in the
worst case Mi contains all the lengths

0, 1, (1 + δ), (1 + δ)2, . . . , (1 + δ)k ≤M.

22 CHAPTER 4. ALGORITHMS AND HARDNESS RESULTS

Algorithm 2: 1 RT-PCR test with approximate length
Input: Exon graph G = (V,E, `, S), RT-PCR test result

T = (s, t, 〈m,M〉) and parameter ε
Output: Score S(π) ≥ S(π∗) of an s–t path π of length

m/(1 + ε) ≤ `(π) ≤M(1 + ε)

for i← 1 to n+ 1 do Mi ← ∅;
M0[`(s)]← 0;
δ ← ε/(2 · |V |);
for i← 0 to n+ 1 do // process vertex vi

sort Mi by scores;
F ← {−∞,+∞};
foreach (l, S) ∈Mi do

ls ← successor of l in F ;
lp ← predecessor of l in F ;
if lp(1 + δ) ≤ l ≤ ls/(1 + δ) then F ← F ∪ {l};

else delete (l, S) from Mi;
end
foreach out-neighbour vj of vi and (l, S) ∈Mi do

l′ ← l + `(vj); S′ ← S + S(vi, vj);
if l+ `(vj) ≤M(1 + ε) and (Mj [l′] is unset or Mj [l′] < S′) then
Mj [l′]← S′;

end
end

end
return max{Mn+1[l] | m/(1 + ε) ≤ l ≤M(1 + ε)};

Thus the number of lengths is k + 2 where k satisfies

k ≤ log1+δM =
lnM

ln(1 + δ)
≤ 1/δ

(
1

1− δ/2
)

lnM ≤ 2
δ

lnM =
4|V |
ε

lnM,

(using ln(1 + x) ≥ x− x2/2 and 1/(1− x) ≤ 2 for x ≤ 1/2). Thus the number
of lengths in each Mi is polynomial in the size of input and 1/ε.

Before filtering each Mi contains O(k degin vi) elements (where degin vi is
the in-degree of vi) and we can sort them in O(k deg vi log kV) time. We can
filter lengths that are too close to each other in O(k deg vi log V) time using
for example some kind of balanced binary tree for F . Finally updating the
values of all out-neighbours can be done in O(k degout vi) time. Thus the whole
algorithm runs in time O(k(V + E) log kV), where k = O(1/ε · V lnM), i.e. in
time polynomial in the size of input and 1/ε as stated.

Now let us prove that the algorithm returns a solution as guaranteed by the
statement of the theorem. By induction on the number of edges r we can prove
that

for every path π = w0w1 . . . wr, where w0 = s and wr = vi of length
`(π) ≤M there is an s–vi path π′ of length `(π)/(1 + δ)r ≤ `(π′) ≤
`(π)(1 + δ)r and score S(π′) ≥ S(π) in Mi (after filtering).

This is certainly true for r = 0, when π = π′ contain just the starting vertex s.
Now let π be an s–vi path and ◦

π be the same path without the last vertex. By

4.2. MULTIPLE RT-PCR TESTS AND ALTERNATIVE SPLICING 23

the induction hypothesis there is a path ◦
π′ such that `(◦π)/(1 + δ)r−1 ≤ `(◦π′) ≤

`(◦π)(1 + δ)r−1 and S(◦π′) ≥ S(◦π). By linking vertex vi to ◦
π′ we get a path π′ of

length
`(π)

(1 + δ)r−1
≤ `(π′) ≤ `(π)(1 + δ)r−1 (1)

with S(π′) = S(◦π′) + S(wr−1, wr) ≥ S(◦π) + S(wr−1, wr) = S(π). Either π′ is
inMi and there is nothing to prove or π′ has been deleted fromMi. However,
then there is an s–vi path π′′ such that

`(π′)
(1 + δ)

≤ `(π′′) ≤ `(π′)(1 + δ) (2)

and S(π′′) ≥ S(π′) ≥ S(π). The statement is proved by combining (1) and (2).
Notice that δ = ε

2n and

(1 + δ)n =
(

1 +
ε/2
n

)n
≤ exp(ε/2) ≤ 1 + ε

for ε ≤ 2. Thus we have proved that if π∗ is the optimal s–t path with length
in 〈m,M〉, there exists path π of length in 〈m/(1 + ε),M(1 + ε)〉 with score
S(π) ≥ S(π∗) in Mn+1 which is returned by the algorithm.

4.2 Multiple RT-PCR Tests and Alternative Splic-
ing

Thus we have answered the question for a single RT-PCR test result. What
about multiple RT-PCR tests?

4.2.1 Multiple RT-PCR Tests

If all the tests are (as intervals, from the first to the second primer) disjoint,
we can run the dynamic programming or approximation algorithm for each test
and find each part of transcript independently. Afterwards we can find the s–vi
path with the highest score consecutively for each 0 ≤ i ≤ n + 1: we extend
the highest score s–vj path for some neighbour vj before vi, or if vi is an end of
some RT-PCR test, we can use the path we calculated in the first phase (if such
path exists) and get bonus B. Actually for every vertex inside some RT-PCR
test we calculate two values: the highest score provided that we went through
the first primer and the highest score if we did not pass the first primer. Then
at the vertex corresponding to the second primer, we either take the highest
score path of required length and get bonus B (if such path exists) or take the
highest score path that does not pass the first primer or the best path that
goes through the first primer, although we get penalty P . We always choose an
option with the highest possible score. Thus we have a corollary:

Corollary 4.4. If there are R disjoint RT-PCR test results (i.e., the intervals
corresponding to the tests with primers being endpoints are disjoint), the problem
can be solved by adapted versions of Algorithms 1 and 2 from Theorems 4.2
and 4.3 with the same time and space complexity.

24 CHAPTER 4. ALGORITHMS AND HARDNESS RESULTS

Actually the |V | and |E| in complexity of these algorithms is the number of
vertices and edges inside of some RT-PCR test.

On the other hand, if the RT-PCR tests overlap, it is not sufficient to cal-
culate the lengths for just a single test – for example if p1 and p′1 are the first
primers of two overlapping tests, we can get the same length l from p1 to p2 with
different lengths l′ from p′1 to p2. An obvious way to generalize our algorithm is
to store pairs (l, l′), or generally k-tuples of lengths (measured from k different
first primers) in places where k RT-PCR tests overlap.

Corollary 4.5. If there are multiple RT-PCR test results, we can find a tran-
script the highest score in time O(Mk(V + E)), where k is the highest number
of tests that overlap some exon.

Naturally, this is not an algorithm we are seeking for.

4.2.2 Length Inference

In the previous section we have proved that the problem is (weakly) NP-complete
for one RT-PCR test. Here we prove that the situation with multiple RT-PCR
tests and alternative splicing is even worse. If the algorithm is to solve Problem
1, it should also decide whether there is a path that explains all the results (this
is the case when the bonuses and/or penalties are very high and say, scores S(e)
are all zero). In this section we consider an even “simpler” problem: If we forget
about the graph structure and imagine the RT-PCR tests as intervals, for each
interval we know (possibly several) lengths of a product in this interval. Then
determining the lengths in the little subintervals composed of the endpoints of
the RT-PCR tests or merely deciding whether this can be done in a consistent
way is what we call a length inference problem. If there is an algorithm that
can find a transcript that explains all the results, then by cutting this transcript
into the given intervals it can surely solve the length inference problem (in a
graph formulation it would be a special case where all exons are of unit length
and the graph is complete).

Problem 3 (The length inference problem (LI)). Let T1, . . . , TR be RT-
PCR tests (tuples of the form (p1, p2, 〈m,M〉), where p1 and p2 are positions
of the primers and the measured length is between m and M). The set of all
primer positions p1, p2 divides interval (0, N) into smaller subintervals – it forms
a partition 0 = y0 < y1 < y2 < · · · < yn < yn+1 = N ; denote these intervals
Ii = (yi, yi+1).

Given the RT-PCR tests T1, . . . , TR find all possible lengths of products in
the subintervals Ii i.e., find all sequences l0, l1, . . . , ln such that 0 ≤ li ≤ yi+1−yi
and for each test T the sum of the lengths between p1 and p2 is between m
and M : m ≤∑Ii⊆(p1,p2)

li ≤M .
If we consider alternative splicing, the tests are of of the form (p1, p2,

〈m1,M1〉, . . . , 〈mk,Mk〉) and we seek lengths of products l0, l1, . . . , ln such that
for each test T the sum of lengths between p1 and p2 is in 〈mj ,Mj〉 for some
1 ≤ j ≤ k. We call this problem (and its decision version, whether such a
sequence of lengths exists) a length inference problem with alternative splicing
(LIAS).

Theorem 4.6. The LIAS problem is NP-complete even if there are at most 2
alternatives in every test.

4.2. MULTIPLE RT-PCR TESTS AND ALTERNATIVE SPLICING 25

Proof. The problem is in NP. We show the completeness by reduction from 3-
SAT. Given a formula ϕ in 3-CNF we show how to construct an input to the
LIAS problem such that there are product lengths satisfying the RT-PCR tests
if and only if there is a valuation of the variables satisfying ϕ.

One of the problems we have to address is to avoid some undesirable inter-
ference between different RT-PCR tests. We solve this by constructing input
from blocks: block will be an interval of known fixed size.

Intervals of length 1 will correspond to the literals. Literal x will always be
followed by its negation x as shown in Fig. 4.1(a). Since the length in intervals
denoted by x and x must sum to 1, they must be indeed complementary. This
way we get a block of length 1 that will not interfere with other RT-PCR tests.
Constructing an input from such blocks will enable us for example to copy the
literals as shown in Fig. 4.1(c): if we know, that the length of a product inside
the lightly-shaded block is n, the intervals denoted by x on the left and x on
the right must sum to 1 and hence must be complementary.

We can also swap the lengths in two intervals as shown in Fig. 4.1(b), which
corresponds to negation: since the two intervals denoted by x in the middle
must sum to 0 or 2 (but not to 1), they must be both 0 or both 1. So if the
lengths in the first two intervals were 0 and 1, there will be 1 and 0 in the second
two intervals and vice versa. Actually, if we know that there is a block of length
n, we can copy a literal x after the block negated as shown in Fig. 4.1(d). The
only change we have to make is to consider a test with results n/n+ 2 instead
of 0/2 in Fig. 4.1(b).

Finally Fig. 4.1(e) shows a block corresponding to a clause (x ∨ y ∨ z). We
argue that some product lengths satisfy this block if and only if x or y or z is true
i.e., product length inside at least one of the intervals denoted as x, y, z is 1. Let
us overload the notation and denote the product lengths in the corresponding
intervals as x, x, y, y, z, z, u and v. Observe that x + y + y + z + z + u must
be 3 or 5. Since y+ y+ z + z form a block of length 2, x+ u must be 1 or 3. If
x = 1, then x = 0 and u must be 3. On the other hand, if x = 0, x = 1 and u
must be 0; so actually u = 3× x. Also notice that y + z + z + u+ v must be 2,
3, 5 or 6, so y + u+ v must be 1, 2, 4 or 5. Now if y = 1, y = 0 and u+ v must
be 1, 2, 4, or 5. Length u is 0 or 3, but either way v must be 2. On the other
hand, if y = 0, y = 1 and u + v must be 0, 1, 3, or 4; either way v must be 0.
So actually v = 2 × y. Finally z + u + v must be 0 or at least 2. Obviously if
x or y is true, u = 3 or v = 2, so no matter what is z, this test is satisfied. If
both x and y are false, u+ v = 0 and z must be 0 too (it cannot be 2 or more),
so z must be 1. Thus we have proved that there exist lengths x, x, . . . , u, v that
satisfy all the tests if and only if x or y or z is true (has length 1).

Notice that we do not know lengths u and v – therefore we juxtapose an
interval p with product length from 0 to 5 which will serve as a padding. We
add a constraint u+ v + p = 5 (which is always satisfiable by a suitable choice
of p) turning the whole construction into a block of length 8.

Now we show how to build an input from the blocks for the whole formula ϕ.
The input will start with all the variables (followed by their negations). Product
lengths in this part will correspond one-to-one with valuations of ϕ. Then for
every clause of ϕi we copy the variables in ϕi normally or negated and apply
the block from Fig. 4.1(e). For example if ϕi = (x2∨x5∨x11), we copy x2, then
copy x5 negated (Fig. 4.1(d)) and after that we copy x11 normally.

If ϕ has m variables and n clauses, this construction creates m + 12n RT-

26 CHAPTER 4. ALGORITHMS AND HARDNESS RESULTS

0–1 0–1

1

x x

(a) Block corresponding to a literal.

0–1 0–1

1

x x
0–1 0–1

1

0/2

x x

(b) Negation of a literal.

0–1 0–1

1

x x

n

0–1 0–1

1

x x

n + 1

(c) Copying a literal after a block.

0–1 0–1

1

x x

n

0–1 0–1

1

x x

n/n + 2

(d) Copying and negating a literal at the same time.

0–1 0–1

1

x x
0–1 0–1

1

y y
0–1 0–1

1

z z

3/5
2–3/5–6

0/2–6

0/3 0/2 0–5

u v p

5

(e) Block corresponding to a clause (x ∨ y ∨ z)

Figure 4.1: Blocks of intervals from which we construct an input corresponding
to a 3-SAT formula.

4.3. USEFUL AND FORBIDDEN PAIRS 27

PCR tests (if we do not count intervals with lengths 0–1 and 0–5, since these
lengths are implicit). We conjecture that we can combine the block for clause
(Fig. 4.1(e)) with copying or negative copying and improve this to m+6n tests.
(As we have shown, this is true for unnegated variables, however, we did not
try all 8 possibilities of negated and unnegated variables in a clause.)

4.3 Useful and Forbidden Pairs

In Section 4.1 we solved the problem for a single RT-PCR test, however we were
unable to come up with an efficient algorithm for more RT-PCR tests. In this
section we show, that there is no such algorithm (polynomial in M , |V | and
|E|), unless P = NP.

We study two problems: useful and forbidden pairs that are at the core of
our problem. We consider the mutual positions of the RT-PCR primer pairs and
prove that for some classes the problem is still hard and for some it is efficiently
solvable by dynamic programming.

Both problems are essentially the Problem 1 without lengths and scores (say
`(v) = 0 and S(e) = 0 for every v ∈ V , e ∈ E):

Problem 4 (The path avoiding forbidden pairs problem (PAFP)).
Given a directed acyclic graph G with two distinguished vertices s, t and a
set F ⊆ V × V of forbidden pairs of vertices, find an s–t path π which does not
contain any forbidden pair i.e., π contains at most one vertex from each pair
(u, v) ∈ F .

We will also refer to the decision problem, whether such path π exists, as
path avoiding forbidden pairs problem (PAFP).

This is a special case of Problem 1: Recall that an RT-PCR test for which
there is no transcript which contains both primers (in some of its exons), gives no
product (formally, the result of the test is just a pair (p1, p2)). In the language
of graph theory this means that an s–t path may go through p1 or through p2

(or none), but not through both p1 and p2 (the transcript has to be consistent
with the test result). Thus from now on we call a pair of primers (p1, p2) from
an RT-PCR test that gave no product a forbidden pair . In Problem 4 all the
RT-PCR tests give no product.

We can also study the reverse problem where the length measurements of
RT-PCR results have such a wide margin that it is not really difficult to explain
some test result (or any combination of them). Then we get a similar problem
but with different motivation: we search for an s–t path that does not avoid
but passes through or “collects” the pairs of primers:

Problem 5 (The path passing useful pairs (PPUP)). Given a directed
acyclic graph G with two distinguished vertices s, t and a set U ⊆ V × V of
useful pairs of vertices, find an s–t path π which contains the maximum number
of useful pairs.

We will also refer to the decision problem, whether there is a path π con-
taining at least k useful pairs, as path passing useful problem (PPUP).

This is also a special case of Problem 1, where all the RT-PCR test results
are of the form (p1, p2, 〈0, L〉) where L is sufficiently large, e.g. L =

∑
v `(v).

This way every transcript that passes both p1 and p2 has length in 〈0, L〉 and

28 CHAPTER 4. ALGORITHMS AND HARDNESS RESULTS

thus explains the length. From now on we call pairs of primers (p1, p2) from
such an RT-PCR test result useful pairs.

The problem of finding a path passing useful pairs turns out to be more
interesting for us, since the efficient algorithms for some special cases can be
generalized into special cases of Problem 1.

It turns out that the complexity of the problems depends to a large extent
on the mutual positions of the pairs and several significant subproblems are
solvable in polynomial time. We study both problems for different types of
mutual positions of the pairs and thus we analyze the boundary between NP-
hardness and efficient solvability.

To define special cases of interest, we extend the topological order into a
linear order of vertices and we fix one such order. We say that vertex u is before
another vertex v (we write u ≺ v), if it is less in this linear order. We recognize
three possible types of mutual position of pairs (p1, p2) and (p′1, p

′
2) (let p1 be

before p′1):

1. disjoint – p2 is before p′1 i.e., p1 ≺ p2 ≺ p′1 ≺ p′2, see Fig. 4.2(a)

2. nested – p2 is after p′2 i.e., p1 ≺ p′1 ≺ p′2 ≺ p2, see Fig. 4.2(b)

3. halving – p2 is before p′2, but after p′1 i.e., p1 ≺ p′1 ≺ p2 ≺ p′2, see Fig. 4.2(c)

(a) Disjoint pair (b) Nested pair. (c) Halving pair.

Figure 4.2: Different mutual positions of RT-PCR tests (forbidden or useful
pairs).

We define 7 classes of RT-PCR test sets, according to the mutual positions
of the pairs that occur in the set:

1. general – there are no constraints on the positions of pairs; any set of pairs
belongs to this class; this corresponds to the Problems 4 and 5

2. halving structure – there may be nested pairs and halving pairs, but no two
pairs are disjoint; as a consequence all the first primers are before all the
second primers i.e., if we number the first primers 1, 2, . . . , R and denote
the corresponding second primers 1′, 2′, . . . , R′, then a set of pairs has halv-
ing structure, if the primers are ordered 1, 2, 3, . . . , R, σ(1′), σ(2′), σ(3′),
. . . , σ(R′) for some permutation σ

3. ordered – there may be disjoint and halving pairs, but no two pairs are
nested; as a consequence all the second primers are in the same order as
the first primers i.e., we say that a set of pairs is ordered, if and only if
the primers are ordered so that 1 ≺ 2 ≺ · · · ≺ R and 1′ ≺ 2′ ≺ · · · ≺ R′

4. well-parenthesized – there may be disjoint and nested pairs, but no two
pairs are halving; if we order the primers and substitute different paren-
theses for different pairs, say (i for the first primer and)i for the second
primer of the i-th pair, we get a sequence that is well-parenthesized

4.3. USEFUL AND FORBIDDEN PAIRS 29

5. ordered halving – there may be only halving pairs (any two pairs halve
each other); this is an intersection of the class of ordered pairs and pairs
with the halving structure; thus this class inherits the atributes of both:
all the first primers are before all the second primers and at the same time
the first primers are in the same order as the second primers; thus the
primers are ordered 1, 2, 3, . . . , R, 1′, 2′, 3′, . . . , R′

6. nested – there are only nested pairs i.e., the first and second primers
are ordered 1, 2, 3, . . . , R,R′, . . . , 3′, 2′, 1′; this is a special case of well-
parenthesized pairs

7. disjoint – all the pairs are pairwise disjoint; the primers are ordered
1, 1′, 2, 2′, 3, 3′, . . . , R,R′; problems for this class are easily solved and we
did so in the previous section

The previous work and our own results are summarized in Tables 4.1 and 4.2.
The problem of avoiding forbidden paths was already studied as early as in the
70’s in connection with an automatic software testing and validation (Krause
et al. (1973), Srimani and Sinha (1982)). In 1976 Gabow et al. proved the general
problem with forbidden pairs NP-complete. The PAFP problem was further
studied by Kolman and Pankrác (2008). We improve these results by showing
a simpler and direct proof of NP-hardness for halving pairs and a simple and
efficient algorithm for the problem with well-parenthesized pairs (that does not
use advanced data structures). Furthermore we prove that the PAFP problem
with ordered set of pairs is still NP-hard (this result is new).

Since nested pairs are a special case of well-parenthesized forbidden pairs,
there is an O(P (V + E) + P 3) algorithm for nested pairs. It remains an open
problem whether this can be improved. Furthermore, Kolman and Pankrác
(2008) prove that the ordered halving case can be solved in polynomial time. It
remains an open problem whether this can be done more efficiently.

Furthermore we study the problem of passing the useful pairs. This problem
has not been studied before and we solved it for each subclass of useful pairs.

We end this section by a simple observation. We defined the disjoint, nested
and halving with a strict inequality, or in other words, the definition does not
allow for pairs with common endpoints. However in practice this may be the
case nevertheless. Also in the following section we construct graphs and pairs
with common endpoints. The following lemma says that the problems with and
without pairs with common endpoints are basically equivalent. This lemma will
be often used in the following sections to simplify the proofs and algorithms.

Lemma 4.7. Graph G = (V,E) and a set of either forbidden or useful pairs
given in Problems 4 and 5 (or their subproblems) can be modified in such a way
that there is at most one pair starting or ending in each vertex. This can be
done efficiently and a solution can be trivially retrieved from the solution for the
modified input.

Proof. It suffices to substitute a vertex with k beginning or ending pairs by a
path Pk of k vertices. We redirect all the incoming edges to the first vertex
of the path and let all the out-going edges start in the last vertex of the path.
This way passing a vertex (in the former graph) is equivalent to passing the
corresponding path (in the modified graph). Furthermore, we assume that the
number of pairs is O(V), which is true for e.g. well-parenthesized pairs (there

30 CHAPTER 4. ALGORITHMS AND HARDNESS RESULTS

Problem Complexity Reference Example

general problem NP-hard Thm. 4.8∗

halving structure NP-hard Cor. 4.14†

ordered NP-hard Thm. 4.15

well-parenthesized O(P (V + E) + P 3) Thm. 4.19†

ordered halving in P †

nested in P Thm. 4.19

disjoint O(V + E)

Table 4.1: Complexity of the path avoiding forbidden pairs problem, where V
and E are the number of vertices and edges of the input graph and P is the
number of forbidden pairs (we generally expect that P = O(V)); NP-hardness
of the general problem was proved by Gabow et al. (1976); results marked by †

were first proved by Kolman and Pankrác (2008), we present our own proofs.

Problem Complexity Reference Example

general problem NP-hard Thm. 4.11

halving structure NP-hard Cor. 4.14

ordered NP-hard Thm. 4.15

well-parenthesized O(P (V + E) + P 3) Thm. 4.17

ordered halving O(P (V + E) + P 3) Thm. 4.20

nested O(P (V + E))

disjoint O(V + E)

Table 4.2: Complexity of the path passing useful pairs problem; V and E are
the number of vertices and edges, P is the number of useful pairs (we assume
that P = O(V)).

4.3. USEFUL AND FORBIDDEN PAIRS 31

are at most 2|V |−3 pairs) or ordered pairs1 (actually in practice we expect it to
be o(V) or much less than the number of vertices) so the graph does not grow
very much. Also this can be done so that it does not destroy the structure of
the input (i.e., being ordered or well-parenthesized).

4.3.1 Bad news

Here we present the proofs of NP-hardness. We proved that the general problem
is NP-hard independently, although it has been known since as early as 1976:

Theorem 4.8. (Gabow et al., 1976) The PAFP problem is NP-complete.

Proof. The problem is obviously in NP. We will show the completeness by re-
duction from 3-SAT.

Let ϕ be an instance of 3-SAT i.e., ϕ = ϕ1 ∧ϕ2 ∧ · · · ∧ϕn is a conjunction of
clauses ϕi = `i,1 ∨ `i,2 ∨ `i,3, where `i,j are literals – variables or their negations
(`i,j ∈ {x1, x1, . . . , xm, xm}). We will construct graph G = (V,E) such that ϕ
is satisfiable if and only if there is an s–t path π in G that avoids all forbidden
pairs.

We will have one vertex for each literal `i,j . Clauses ϕi will form layers of
graph G and each literal from ϕi will be connected to every literal from ϕi+1

(see Fig. 4.3). We add a distinguished starting vertex s connected to literals of
the first clause and a terminal vertex t connected to literals of the last clause.
Formally: V = {s, t} ∪ {`i,j | 1 ≤ i ≤ n, 1 ≤ j ≤ 3} and E = {(s, `1,j) | 1 ≤ j ≤
3} ∪ {(`i,j , `i+1,k) | 1 ≤ i < n, 1 ≤ j, k ≤ 3} ∪ {(`n,j , t) | 1 ≤ j ≤ 3}.

s

ϕ1 ϕ2 ϕ3 ϕ4

· · ·

· · ·

· · ·

ϕn

t

Figure 4.3: Input for the PAFP problem for formula ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn

Every s–t path π in G goes through exactly one vertex from each layer, so
it can be interpreted as choosing one literal from each clause that we would like
to satisfy. Naturally, not every path will correspond to a correct valuation –
we cannot set both a variable and its negation true; but this can be ensured by
forbidden pairs. Formally F = {(`i,j , `i′,j′) | `i,j = ¬`i′,j′}

Now if π = s, `1,j1 , `2,j2 , . . . , `n,jn , t is a path in G that contains at most one
vertex from each forbidden pair, then it does not contain a pair `i,ji , `i′,ji′ such
that `i,ji = ¬`i′,ji′ . Set variable x true, if x is on path π (x = `i,ji for some i)
and false, if x is on path π (¬x = `i,ji for some i). Truth value of the rest of
variables not on the path π can be chosen arbitrarily. This is a valuation that
satisfies ϕ.

1in general or in the halving case there may be as many as Ω(V 2) pairs, but these versions
of the problem are NP-hard

32 CHAPTER 4. ALGORITHMS AND HARDNESS RESULTS

On the other hand if v is a valuation that satisfies ϕ, the set of true literals
does not contain a forbidden pair. Moreover, from each layer in G we can choose
at least one vertex that corresponds to a true literal, so these vertices connect
s and t in G. Thus we can find an s–t path in G that avoids the forbidden
pairs.

As Kolman and Pankrác (2008) note, the problem remains NP-hard even
if every vertex appears in exactly one pair or if graphs (V,E) and (V, F) are
planar (we can think of the forbidden pairs as edges).

Corollary 4.9. (Kolman and Pankrác, 2008) The PAFP problem remains NP-
hard even if both (V,E) and (V, F) are planar.

Proof. We can add a new vertex between each layer of graph G in proof of
Theorem 4.8 and substitute the K3,3 subgraphs with stars S7 (we do not need
direct edge connecting each pair, it is sufficient that there is a path connecting
them).

If we start with an instance of 3-SAT in which for each variable xi there
are at most 3 clauses containing xi or xi (also NP-hard, Garey and Johnson
(1979)), we get planar (V, F).

Corollary 4.10. (Kolman and Pankrác, 2008) The PAFP problem remains
NP-hard even if every vertex except for s and t appears in exactly one forbidden
pair.

We show a similar proof for the problem with useful pairs:

Theorem 4.11. The PPUP problem is NP-complete.

Proof. The proof is similar to the proof of Theorem 4.8. The problem is obvi-
ously in NP. We will show the hardness by reduction from 3-SAT.

Let ϕ =
∧

1≤i≤n ϕi, where ϕi =
∨

1≤j≤3 `i,j and `i,j ∈ {x1, x1, . . . , xm, xm}
be an instance of 3-SAT. We will construct graph G = (V,E) such that ϕ is
satisfiable if and only if there is an s–t path π in G containing (at least) n useful
pairs.

G will consist of two parts: The first part will contain a vertex for each
variable xi and its negation xi (see Fig. 4.4). Path π traversing this first part
of G will correspond to a valuation v such that xi is true if and only if π passes
vertex xi. The second part will contain a vertex for each literal `i,j as in Fig. 4.4.
We add vertices s, t and useful pairs connecting each literal from the first part
of G to every occurence of the very same literal in the second part of G.

s

x1

x1

x2

x2

x3

x3

· · ·

· · ·

· · ·

xm

xm

ϕ1 ϕ2 ϕ3

· · ·

· · ·

· · ·

ϕn

t

Figure 4.4: Input for the PPUP problem for formula ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn

Formally: V = {s, t} ∪ {x1, x1, . . . , xm, xm} ∪ {`i,j | 1 ≤ i ≤ n, 1 ≤ j ≤
3}, E = {(s, x1), (s, x1)} ∪ {(xi, xi+1), (xi, xi+1), (xi, xi+1), (xi, xi+1) | 1 ≤ i <

4.3. USEFUL AND FORBIDDEN PAIRS 33

m} ∪ {(xm, `1,j), (xm, `1,j) | 1 ≤ j ≤ 3} ∪ {(`i,j , `i+1,k) | 1 ≤ i < n, 1 ≤ j, k ≤
3}∪{(`n,j , t) | 1 ≤ j ≤ 3} and U = {(xk, `i,j) | `i,j = xk}∪{(xk, `i,j) | `i,j = xk}.

Let n, the number of clauses, be the required number of useful pairs k.
Suppose there is an s–t path π in G that passes at least k useful pairs. Then
the first part of π determines a valuation v for ϕ. The clauses ϕi form layers of
the second part of G and π passes exactly one vertex from each layer. There are
n such layers and π passes a useful pair only if the literal is true in v. Therefore
all the clauses must be satisfied by valuation v.

Conversly, if v is a valuation that satisfies ϕ, π will go through the vertices
corresponding to the true literals in the first part of G and from each layer of
the second part we can choose at least one vertex that is satisfied by v. Thus
we pass a useful pair on every layer of the second part of G and π is an s–t path
passing k = n useful pairs.

Corollary 4.12. The problem remains NP-hard even if both (V,E) and (V,U)
are planar.

Proof. As in Corollary 4.9, this time we can do a reduction from planar 3-SAT
(satisfiability of a formula in CNF with at most 3 literals in each clause such
that a bipartite graph made of variables and clauses where variable xi and clause
ϕj are joined by an edge, if xi or xi belongs to the clause ϕj is planar). Planar
3-SAT was proved NP-hard by Lichtenstein (1982).

Corollary 4.13. The PPUP problem is APX-hard.

Proof. The reduction from proof of Theorem 4.11 is actually a gap-preserving
reduction to MAX-3-SAT, which is APX-complete: If k clauses of ϕ can be
satisfied, then there is an s–t path in G that passes k useful pairs and vice
versa.

The problem with halving structure of forbidden pairs was proved NP-hard
by Kolman and Pankrác (2008) for the first time. We show our own, simpler
and direct proof:

Corollary 4.14. The PAFP and PPUP problems with halving structure are
NP-complete.

Proof. Actually we have already proved this since the pairs in the proof of
Theorem 4.11 have the required structure – all the first primers are before all
the second primers. An analogous proof can be done for the PAFP problem.

Theorem 4.15. The PAFP and PPUP problems with ordered set of pairs are
NP-complete.

Proof. By reduction from 3-SAT: Let ϕ =
∧

1≤i≤n ϕi, where ϕi =
∨

1≤j≤3 `i,j
and `i,j ∈ {x1, x1, . . . , xm, xm} be an instance of 3-SAT.

We will construct graph G from blocks: block B is a graph of 2m vertices
corresponding to the positive and negative literals with edges from both xi and
xi to both xi+1 and xi+1 for 1 ≤ i < m (see Fig. 4.5(a)). We have already
encountered block B in the proof of Theorem 4.11 – it was the first part of
the graph. As we know, a path in B naturally corresponds to a valuation of
variables.

34 CHAPTER 4. ALGORITHMS AND HARDNESS RESULTS

Let ` be a literal and denote by B` graph B − ` i.e., block B from which
we delete vertex `. A path in B` (since it cannot go through `) naturally
corresponds to a valuation where ` is true. Blocks B` will be the basic building
blocks of our graph. Because of the restriction on the positions of pairs we will
copy whole blocks and ensure that the valuation is always the same in each
block by forbidden or useful pairs.

There will be three blocks corresponding to each clause ϕi. For example
if ϕi = (x ∨ y ∨ z), there will be blocks Bx, By and Bz in graph G. An s–t
path in G could go either through Bx, through By or through Bz. Note that
the order of the vertices is important. Therefore we represent clause ϕi by
subgraph Zip(Bx, By, Bz), where by zipping 3 graphs with the same number of
vertices we mean making a union Bx ∪ By ∪ Bz and furthermore, if the order
of vertices in the three graphs is x1 < x2 < · · · < xk, y1 < y2 < · · · < yk
and z1 < z2 < · · · < zk, then the order of vertices in the zipped graph is
x1 < y1 < z1 < x2 < y2 < z2 < · · · < xk < yk < zk.

Again, due to the constraints on position of the pairs we place block B
between every two subgraphs corresponding to the consecutive clauses. The
resulting graph will look like the one on Fig. 4.5(b). Formally: let us define
first(B) = {x1, x1}, last(B) = {xm, xm}, first(Zip(G1, G2, G3)) =

⋃
i first(Gi)

and last(Zip(G1, G2, G3)) =
⋃
i last(Gi); further define G1 ./ G2 as G1 ∪ G2

with edges joining each vertex from last(G1) with each vertex from first(G2).
Then we can write the resulting graph G as:

G = s ./ B ./ Zip(B`1,1 , B`1,2 , B`1,3) ./ B ./ Zip(B`2,1 , B`2,2 , B`2,3) ./ B ./ · · ·
· · · ./ B ./ Zip(B`n,1 , B`n,2 , B`n,3) ./ t

x1

x1

x2

x2

x3

x3

· · ·

· · ·

xm

xm

(a) Block B – vertices of this graph correspond
to positive and negative literals; path through this
graph corresponds to a valuation of variables.

s
B

B`1,1

ϕ1

B`1,2

B`1,3

B

B`2,1

ϕ2

B`2,2

B`2,3

· · ·
B`n,1

ϕn

B`n,2

B`n,3

t

(b) Construction of G from the blocks and zipped blocks corresponding to the clauses.

Figure 4.5: Construction of the graph G for a 3-SAT formula ϕ.

It remains to show how to ensure the same valuation in each block along an
s–t path. This is slightly different for the PPUP and PAFP problem: In the
PPUP problem the vertices in a block are ordered x1 < x1 < x2 < x2 < · · · <
xm < xm and a useful pair connects vertices representing the same literals in
every two consecutive blocks. An s–t path is required to pass k = (2n − 1)m
useful pairs. In the PAFP problem there is an alternative ordering of vertices:
x1 < x1 < x2 < x2 < · · · < xm < xm. Forbidden pairs connect variables and

4.3. USEFUL AND FORBIDDEN PAIRS 35

their negations, so in order to get an ordered set of pairs we have to alternate
between the two orderings.

4.3.2 Good news

In the previous sections we identified the cases where there is no point of trying
to develop an efficient algorithm. However, there are special cases for which
the problem is efficiently solvable. All the algorithms are based on dynamic
programming and can be generalized to a pseudopolynomial algorithm for the
special cases of Problem 1.

We start with a simple observation. Our algorithms are based on dynamic
programming on vertices of the graph. However, not all the vertices are impor-
tant. We can contract the paths through vertices where no pair starts or ends
into simple edges.

Lemma 4.16 (Graph contraction). We can modify the input graph in such
a way, that exactly one pair (useful or forbidden, depending on the problem)
either starts or ends in each vertex – this graph has O(P) vertices. This can be
done in O(P (V + E)) time.

Proof. Call the vertices where no pair starts or ends free and call pair vertices
the rest. We modify the input graph as in Lemma 4.7. Now we just traverse
the graph (either by DFS or BFS) starting from all the pair vertices, s and t,
but going through free vertices only. We form a new graph, where we leave only
the pair vertices and discard the free vertices. There will be an edge connecting
two pair vertices if there was a path (through free vertices) in the unmodified
graph. If we save also these paths, we can reconstruct a path in the unmodified
graph from the solution to the new graph (in time proportional to the length of
the path).

Theorem 4.17. The PPUP problem with well-parenthesized useful pairs can be
solved in O(P (V + E) + P 3) time.

Proof. First we modify the graph so that at most one pair starts or ends in
each vertex (Lemma 4.7). We solve the problem by dynamic programming. For
every 0 ≤ i ≤ j ≤ n + 1 we calculate the value P[i, j] defined as the highest
number of useful pairs we can take on a path from vi to vj . The table P will be
calculated in “diagonal order” by increasing value of j − i i.e., we will calculate
the value of P for vertices that are gradually farther and farther apart.

Let us define an auxilliary value

Mi,j = max{P[k, j] | i < k ≤ j, vk is a neighbour of vi}
which we can compute in O(j − i) = O(V) time. Then

P[i, j] =

Mi,j if no useful pair begins in vi

Mi,j + 1 if (vi, vj) is a useful pair
max(Mi,j ,P[i, k] + P[k, j]) if (vi, vk) is a useful pair for i < k < j.

Let π be the vi–vj path with the highest number of useful pairs. The first case
is obvious: if no useful pair begins in vi, the second vertex of π must be one
of the vi’s neighbours and we take the best path from them to vj (this is the

36 CHAPTER 4. ALGORITHMS AND HARDNESS RESULTS

value Mi,j). We add one if (vi, vj) is itself a useful pair. If there is a useful pair
starting in vi, we may either take it or let it be. If we do not want to take it,
the best possibility is Mi,j as in the previous cases. However, if we decide to
take it, we have to go through vertex vk. Let the subpath of π from vi to vk be
π1 and π2 be the rest. Thanks to the well-parenthesized structure, no pair can
begin on π1 and end on π2. Thus the best vi–vk–vj path is composed of the
best path from vi to vk and the best path from vk to vj .

This way the value of P[0, n + 1], which is the highest number of useful
pairs on an s–t path, can be computed in O(V 3). Using the contraction from
Lemma 4.16 we get an algorithm with time complexity O(P (V +E) +P 3).

Corollary 4.18. There is an algorithm for the general PPUP problem with
parametric complexity O(2kP 3 +P (V +E)), where k is the minimal number of
pairs we would have to take away to get a well-parenthesized set of pairs.

Proof. We contract the graph according to Lemma 4.16. The value of k and the
choice of k pairs that we should take away can be calculated in O(P 2): Let T [i, j]
be the number of parenthesis we should take away to make a region from vi to vj
“well-parenthesized” (there may be unmatched parentheses but no overlapping
pairs). If no useful pair starts at vi, T [i, j] = T [i+1, j]; otherwise, if (vi, vk) ∈ U
is a useful pair, then we either take it away and T [i, j] = T [i+ 1, j] + 1, or we
leave it there, but then we have to make the inner and outer regions well-
parenthesized, so T [i, j] = T [i + 1, k − 1] + T [k + 1, j] (T [i, j] is the minimum
of the two). Finally k = T [0, n+ 1].

There are exactly 2k combinations of whether we take or do not (necessarily)
take the “bad” parentheses. We try all of them; we can force an s–t path to
go through some vertices by simply deleting edges that jump over them. To
compute the exact solution for the remaining well-parenthesized pairs we use
algorithm of Theorem 4.17. Thus the whole algorithm runs in time O(2kP 3 +
P (V + E)).

Similar result for the forbidden pairs was first proved by Kolman and Pankrác
(2008). Their algorithm uses three rules for reducing the input graph:

1. Contraction of a vertex – if v does not appear in any forbidden pair, we
can delete it and add a direct edge (u,w) for every pair of edges (u, v),
(v, w).

2. Removal of an edge – if edge e ∈ E ∩ F joins two vertices that make up a
forbidden pair, we can remove e from E.

3. Removal of a forbidden pair – if (u, v) ∈ F is a forbidden pair, but there
is no path from u to v, we can remove (u, v) from F .

These three rules are alternatively applied to the graph until we end up with
vertices s and t only – either joined by an edge or disconnected – in this case
there is no s–t path avoiding forbidden pairs in the original graph.

A simple implementation of this approach gives an O(V 2E) algorithm. Using
fast matrix multiplication we can reduce this to O(V 3.376) or using a dynamic
data structure for “finding paths and deleting edges in directed acyclic graphs”
by Italiano (1988) we can reduce it still to O(V 3).

Here we describe our own O(V 3) algorithm, its advantages being simplicity,
not using advanced data structures or algorithms and extensibility – for example

4.3. USEFUL AND FORBIDDEN PAIRS 37

it is easy to compute the least number of forbidden pairs on an s–t path (this
is not at all obvious for the former solution).

Theorem 4.19. The PAFP problem with well-parenthesized useful pairs can be
solved in O(P (V + E) + P 3) time.

Proof. Let us try similar approach as in Theorem 4.17. We modify the in-
put graph so that no two forbidden pairs start or end in the same vertex
(Lemma 4.7). We will calculate P in diagonal order for each 0 ≤ i ≤ j ≤ n+ 1
Let P[i, j] be true if and only if there is a path from vi to vj that does not con-
tain forbidden pairs. First if (vi, vj) ∈ F is itself a forbidden pair, then P[i, j]
is false by definition. If no forbidden pair starts in vi, the second vertex on the
vi–vj path has to be one of the vi’s neighbours, so P[i, j] =

∨
k P[k, j] where

i < k ≤ j and vk is vi’s neighbour. That is, P[i, j] is true if and only if there is
a “safe” path from some neighbour vk to vj . If there is a forbidden pair starting
in vi, there still may be no forbidden pair ending in vj and we may calculate
P[i, j] in the same way symmetrically.

The last case, when there are two forbidden pairs, say (vi, vp) and (vq, vj) is
the hardest. There is a possibility that there is a safe vi–vj path through some
“middle” vertex vm for p < m < q (see Fig. 4.7(a)). If this is the case, we can
discover it easily: P[i, j] =

∨
p<m<q(P[i,m]∧P[m, j]). However, the path from

vi to vj may also “jump” over this region (see Fig. 4.7(b)). Then there is an
edge on the path that starts before vp and ends after vq. Surely we can try all
such edges, but this way we get time complexity O(V 4). In the rest of the proof
we show how to decrease the complexity to O(V 3).

Consider all the forbidden pairs which contain vj (vj is between the first
(exclusive) and the second primer (inclusive) in the topological order) and do
not contain vi. Let us define last(i, j) as the last beginning vertex from these
forbidden pairs. If we wrote the forbidden pairs as a well-parenthesized se-
quence of left and right parentheses, last(i, j) would be the last unmatched left
parenthesis (strictly) between i and j (see Fig. 4.6).

vi vjlast(i, j)

*) ()) ()) (((() (()) *(

Figure 4.6: Definition of last(i, j) – it is a starting vertex of the most nested pair
containing vj and not vi, or equivalently, the last unmatched left parenthesis if
we depict the pairs as matching parentheses.

Values last(i, j) can be computed easily with help of one stack: we just push
a forbidden pair on the stack when it begins and pop it from the stack when
it ends. We start from j = i + 1 with an empty stack with convention that
popping from an empty stack does not do anything and top of an empty stack
is undefined. This way last(i, j) is always the value on the top of the stack
(possibly undefined). Note that when there is a forbidden pair ending in vertex
vj , then last(i, j) is exactly the first vertex of this pair (unless this is before vi).

In addition to calculating values P[i, j] we will compute also values J [i, j]
which we define as true if and only if there is a safe vi–vj path (i.e., without

38 CHAPTER 4. ALGORITHMS AND HARDNESS RESULTS

forbidden pairs) such that the first edge jumps over the last(i, j). In other words
there is a neighbour vk of vi such that last(i, j) < k ≤ j and there is a safe path
from vk to vj – P[k, j] is true. Values J [i, j] are computed easily: we just
examine the neighbours of vi.

vi vp vq vj

vm

P[i, m] P[m, j]

(a) A safe path going through the middle region.

vi vjvp vqvk

P[i, k] J [k, j]

(b) A safe path jumping over the middle region; arc represents
one edge, wavy lines represent paths.

Figure 4.7: Two cases that may arise when finding a safe path from vi to vj –
either the path goes through the middle region, or it jumps over.

Using the table J we can compute also P efficiently. The first three cases
remain the same; if (vi, vj) is a forbidden pair, P[i, j] is false. If no pair starts
in vi or ends in vj , we compute P[i, j] by examining their neighbours. If there
are forbidden pairs (vi, vp) and (vq, vj), then either the path goes through the
middle region between vp and vq (see Fig. 4.7(a)), or there is vertex vk before
vp such that there is a safe path from vi to vk and from vk it jumps after vq and
goes safely to vj (see Fig. 4.7(b)). Formally:

P[i, j] =

false if (vi, vj) ∈ F is a forbidden pair∨
k P[k, j] i < k ≤ j, vk is a neighbour of vi

if no forbidden pair starts in vi∨
k P[i, k] i ≤ k < j, vk is a neighbour of vj

if no forbidden pair ends in vj∨
p<m<q(P[i,m] ∧ P[m, j]) if (vi, vp) and (vq, vj) are forbidden pairs
∨∨i≤k<p(P[i, k] ∧ J [k, j])

This way P[0, n+ 1], which is true if and only if there is a safe s–t path, can
be computed in O(V 3), or in O(P (V + E) + P 3) using the preprocessing step
from Lemma 4.16.

Theorem 4.20. The PPUP problem with ordered halving useful pairs can be
solved in O(P (V + E) + P 3) time.

Proof. We first transform the graph into the normal form from Lemma 4.16 and
calculate a transitive closure, so that there is an edge between two pair vertices
if there is a path connecting them in the unmodified graph. Now if there are
n useful pairs, there are pairs starting in vertices v1, v2, . . . , vn and ending in
vn+1, vn+2, . . . , v2n, respectively – the k-th pair is (vk, vn+k).

When we search the best s–t path, we are actually searching for a sequence
of useful pairs such that

4.3. USEFUL AND FORBIDDEN PAIRS 39

1. there is an edge in the modified graph joining the consecutive starting and
the consecutive ending vertices and

2. there is an edge joining the last starting and the first ending vertex.

Our algorithm has two phases: in the first phase we find long sequences of
useful pairs that satisfy the first condition, or more precisely, for each 1 ≤ i ≤
j ≤ n we find the longest sequence of useful pairs satisfying condition 1 starting
with the i-th and ending with the j-th pair. In the second phase we then find
the longest sequence out of these satisfying condition 2.

Thus let P[i, j] be the longest sequence of useful pairs from the i-th to the
j-th satistying 1, or in other words, the maximum number of useful pairs on
a path from vi to vj and a path from vn+i to vn+j . The values P[i, j] can be
computed by dynamic programming – we just search for the best second to last
pair. If π is the longest sequence of pairs with i-th pair being the first and j-th
pair the last and if k-th pair is the second to last pair of S, then S without the
last pair is the longest sequence starting with the i-th pair and ending with the
k-th pair. Thus P[i, j] is the maximum of P[i, k] + 1 through all k such that
k-th pair is a possible second to last pair, or in other words,

P[i, j] = max
i≤k<j

{P[i, k] + 1 | (vk, vj) ∈ E ∧ (vn+k, vn+j) ∈ E}

In the second phase we choose the longest of these sequences such there is
an edge joining the last starting and the first ending vertex. That is, we take
the maximum of P[i, j] through all i, j such that the starting vertex of the j-th
pair is connected with the ending vertex of the i-th pair; thus the result is

max
i,j
{P[i, j] | (vj , vn+i) ∈ E}.

(Here we assume that there is a path from s to every starting vertex and from
every starting vertex to t – otherwise we could discard this test in the beginning.)

From another point of view: If we create a graph where vertices represent
useful pairs and there is a blue edge between pairs (vi, vn+i) and (vj , vn+j) if
and only if there is a path from vertex vi to vj and from vn+i to vn+j and there
is a red edge between pairs (vi, vn+i) and (vj , vn+j) if and only if there is a
path from vn+i to vj . This graph can be constructed in O(P (V + E)) and all
the blue paths are exactly the sequences of pairs that satisfy condition 1. Blue
paths with first and last vertex joined by a red edge also satisfy condition 2. So
we are trying to find the longest blue path with first and last vertex joined by
a red edge.

Corollary 4.21. There is an algorithm for the general PPUP problem with
parametric complexity O(2kP 3 +P (V +E)), where k is the minimal number of
pairs we would have to take away to get an ordered halving set of pairs.

Proof. The proof is similar to that of Corollary 4.18: We contract the graph,
calculate the value of k and which pairs should be taken away. This can be
calculated in O(P 2): For pairs p = (vi, vj) and q = (vk, vl) define p ≺ q if and
only if i < k < j < l; Given the sequence of useful pairs (sorted by the first
vertex) we find the longest ascending subsequence (these are the “good” pairs).

Then we try all the 2k combinations of taking and not taking the “bad”
pairs using algorithm of Theorem 4.20.

40 CHAPTER 4. ALGORITHMS AND HARDNESS RESULTS

4.4 More on Multiple RT-PCR Tests

In the previous section we have thoroughly studied the problem of finding an
s–t path with as many useful pairs as possible. It was shown, that there is no
point in considering general, halving or ordered RT-PCR tests. However, we
have shown that the PPUP problem is efficiently solvable for well-parenthesized
pairs and ordered halving pairs. In this section we generalize these results: We
solve Problem 1 for well-parenthesized RT-PCR tests with penalty P = 0.

It turns out that the algorithms work also for RT-PCR test results with
multiple measured lengths and even for a more general bonus function bi,j ,
where bi,j(l) ≥ 0 for all lengths l. Our constant B with alternative splicing can
be modeled as a function b where b(l) = B if length l explains some measured
length and b(l) = 0 otherwise. However, we may use even fancier functions
where the bonus is lower on the boundaries of the interval 〈m,M〉 and it is
highest in the middle. Let ∆b be the number of lengths that get any bonus i.e.,
∆b = #{l | b(l) > 0} (this is just M −m+ 1 for an interval 〈m,M〉).
Theorem 4.22. A special case of Problem 1 with well-parenthesized RT-PCR
tests and penalty P = 0 can be solved in O(V 3∆M), where ∆ is the maximum
of ∆b (from all RT-PCR test bonus functions) and M is the maximum length
(of all the measured lengths).

Proof. We generalize our dynamic programming solution from Theorem 4.17 in
Section 4.3.2. Let P[i, j, d] be the maximal score of a vi–vj path of length d and
let

Mi,j,d = max
k
{S(i, k) + P[k, j, d− `(vi)] | (vi, vk) ∈ E, k ≤ j}.

Then if there is no first primer in vertex vi, P[i, j, d] is simply Mi,j,d – we
examine all the potential successors of vi on the path to vj and find one for
which the score is maximal. If vi and vj are primers of one RT-PCR test, then
the best path has also score Mi,j,d, however, bonus B is added, if length d
explains some length of the test. The last case is when there is an RT-PCR
test with primers say vi and vk. Then either we do not attempt to explain the
lengths of this result, or the vi–vj path goes through vk and there is a d′ which
explains this result. The highest possible score is then P[i, k, d′]+P[k, j, d−d′].
Or formally:

P[i, j, d] =

Mi,j,d if no first primer begins in vi

(or d does not explain any length)
Mi,j,d +B if vi, vj are primers of an RT-PCR test

and d explains the result
max(Mi,j,d, if vi, vk are primers of an RT-PCR test
P[i, k, d′] + P[k, j, d− d′]) and d′ explains the result; i < k < j.

We can also contract the input graph as we did in the previous section.

Corollary 4.23. A special case of Problem 1 with well-parenthesized RT-PCR
tests and no penalty can be solved in O(P ·M(V +E) +P 3M2), where P is the
number of RT-PCR tests.

4.4. MORE ON MULTIPLE RT-PCR TESTS 41

Proof. We run Algorithm 1 from Section 4.1 from the first primer of every
RT-PCR test. From the acquired information we can construct the contracted
graph, such that vertices are the primers and there is an edge of certain length
between two vertices if and only if there is a path of that length between the
primers. Its score is the highest score from all paths of the given length. (Note
that we get a multidigraph – between every two vertices there are many (but at
most M + 1) arcs of different lengths.) This can be done in O(P ·M(V + E)).

The dynamic programming is then run on the modified graph with a minor
change that

Mi,j,d = max
k,d′
{S(e) + P[k, j, d− d′] | e = (vi, vk) ∈ E, `(e) = d′, k ≤ j}.

Since now we examine all the neighbours and all possible lengths, the dynamic
programming runs in time O(P 3M2).

42 CHAPTER 4. ALGORITHMS AND HARDNESS RESULTS

Chapter 5

Conclusion

We have defined and studied a new problem in bioinformatics. This problem can
be formalized as finding the best path in an exon graph with given lengths for
certain pairs of vertices. This problem is provably hard: it is weakly NP-hard
for a single RT-PCR test and for multiple tests with alternative splicing it is
strongly NP-hard even for a simpler version that we called the length inference
problem.

Then we study the problem of finding a path without forbidden pairs and
a path passing useful pairs. The former problem has already been studied,
however we improve on several results:

• proof of NP-hardness for ordered pairs (this has not been studied before)

• simpler and direct proof of NP-hardness for halving pairs

• simple and efficient algorithm for the problem with well-parenthesized
pairs (that does not use advanced data structures)

The latter problem has not been studied before and we feel than we have satis-
factorily solved it for each subclass of pair positions. We have thus studied the
borderline between NP-hardness and efficient solvability.

There is still work to be done and there are still unanswered problems. In
the near future we will carry out experiments that will show how efficient is
this approach in discovering the genes in practice. There are open questions
including the following:

• How fast can be the nested and ordered halving case of forbidden pairs
problem solved? (It is known that these problems are polynomially solv-
able.)

• Is it possible to approximate the PPUP problem at all? (We have shown
that it is APX-hard.)

43

44 CHAPTER 5. CONCLUSION

Bibliography

Agrawal, R. and Stormo, G. D. (2006). Using mrnas lengths to accurately pre-
dict the alternatively spliced gene products in aenorhabditis elegans. Bioin-
formatics, 22(10):1239–1244.

Brazma, A., Parkinson, H., Schlitt, T., and Shojatalab, M. (2001). A quick intro-
duction to elements of biology – cells, molecules, genes, functional genomics,
microarrays. http://www.ebi.ac.uk/microarray/biology intro.html.
Draft, [Online; accessed 8 January 2008].

Gabow, H. N., Maheswari, S. N., and Osterweil, L. J. (1976). On two problems
in the generation of program test paths. IEEE Trans. Software Eng., 2(3):227–
231.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman.

Ibarra, O. H. and Kim, C. E. (1975). Fast approximation algorithms for the
knapsack and sum of subset problems. J. ACM, 22(4):463–468.

Italiano, G. F. (1988). Finding paths and deleting edges in directed acyclic
graphs. Inf. Process. Lett., 28(1):5–11.

Kolman, P. and Pankrác, O. (2008). On the complexity of paths avoiding
forbidden pairs.

Krause, K. W., Smith, R. W., and Goodwin, M. A. (1973). Optional software
test planning through automated network analysis. Proceedings 1973 IEEE
Symposium on Computer Software Reliability, pages 18–22.

Lichtenstein, D. (1982). Planar formulae and their uses. SIAM J. Comput.,
11(2):329–343.

Sakharkar, M. K., Chow, V. T. K., and Kangueane, P. (2004). Distributions of
exons and introns in the human genome. In Silico Biology, 4.

Srimani, P. K. and Sinha, B. P. (1982). Impossible pair constrained test path
generation in a program. Inf. Sci., 28(2):87–103.

Strachan, T. and Read, A. P. (1999). Human Molecular Genetics. Bios Scientific
Publishers Ltd, Oxford, UK, 2nd edition.

Wikipedia (2009a). Polymerase chain reaction — wikipedia, the free encyclo-
pedia. [Online; accessed 17-April-2009].

45

46 BIBLIOGRAPHY

Wikipedia (2009b). Reverse transcription polymerase chain reaction —
wikipedia, the free encyclopedia. [Online; accessed 17-April-2009].

